
IRL #6: Progress Review

Man-Ning Chen (Mandy)

Team G: EXCALIBR

Teammates: Yiqing Cai, Huan-Yang Chang,

Siddharth Raina, Sambuddha Sarkar

Individual Progress

Overview
After our team meeting with Oculus, we set up several tasks for this semester. First,

we are continuing the sensor noise calibration. An integrating sphere will be added

into our system for high accuracy performance. Second, after proving the RGB

photometric responses are linear, we are going to conduct color calibration and

generate the mapping function of color sensors. Third, we will keep doing

geometric calibration. Forth, in addition to the real-world experiment, a simulation

is required. We will use Blender to generate simulated images of virtual targets

from virtual cameras.

Color Calibration
Color calibration is to measure and adjust the color response of a device (input or

output) to a known state. We use an X-Rite ColorChecker Classic Card [Fig. 1] as

our ground truths (The manufacture gives us the true color values) and aim at

mapping the colors recorded by the cameras these ground truths.

Figure 1. An X-Rite ColorChecker Classic Card

Figure 2. Mapping function (unreal):

This graph is only for illustrate the

concepts

Color Calibration Pipeline
I plan to divide and conquer the problem by doing color patch segmentation first and

address the color board detection part later. I will combine these two parts to get the

algorithm which can each color on the colorchecker in the images. In the end, I can

use the recorded colors and the ground truth to generate the mapping function.

Figure 3. Color Calibration Pipeline

Current Status

Note: I am currently using my personal smart phone for this algorithm development.

After the algorithm is completed, the testing will be done on EVT cameras.

Since the colorchecker detection problem is ignored in current stage, I crop the image,

leaving only the interested part in the image. [Fig. 4]

Figure 4. The cropped

image

I use a threshold to cut off make the image separate into background (zero) and

foreground (one). [Fig. 5] Then, the image becomes a binary image. [Fig. 6]

Figure 5. Intensity histogram of the image

Figure 6. Binary image

We can see that the background splits the foreground into 23 patches. If we use

flood-fill algorithm to find out and label these patches. [Fig. 7] Then, we can get the

centers of each patches. [Fig. 8] As you may see in the image, the center of label 16

is not really in the center of the patch because we lost most parts in label 16.

However, it doesn’t hinder our goal which is getting the recorded value of each color

patch and compare it with its correspondent ground truth.

Figure 7. Labeled Image

Figure 8. Centers of

each color patches

Challenge

1. While the Intensity threshold used in our image cuts off the background, it also

cuts off the black patch. We need other ways to find the center of the black

patch. I am considering using the intersection of lines of other patch centers or

extrapolating other patch center lines to get the position of the black patch.

2. The algorithm is easily affected by the lighting condition of the experiment

condition. I’ll have to conquer this problem.

Teamwork

Yiqing Cai Generate one of the best path for

robot arm (go through as least

positions as possible to cover FOVs of

all cameras)

Huan-Yang Chang Simulation system setup, Geometry

calibration

Siddharth Raina Sensor noise calibration

Sambuddha Sarkar Works on Blender. Generate virtual

calibration target and render the

virtual images of the target.

References

[1] https://en.wikipedia.org/wiki/Color_calibration

[2] https://en.wikipedia.org/wiki/Flood_fill

https://en.wikipedia.org/wiki/Flood_fill

