=

*%000
o

2713
E—

16-682 - MRSD Project II | ILR #07
Individual Lab Report #07 |February 16, 2017

SAMBUDDHA SARKAR

Team G
eXcalibR

Huan-Yang Chang
Man-ning Chen
Sambuddha Sarkar
Siddharth Raina
Yiging Cai

1.1 Overview

In this ILR | would describe about trajectory generation, multiple image
capture and exporting data from the virtual scene. The virtual
environment is being modeled in an open source platform: Blender 3D
7.68a. It is a Maya based platform and is programmable by Python 3.
Topics covered have been listed below for a quick overview.

1.2 Test Trajectory
1.3 Image Capture (100 samples)
1.4 Exporting Camera Extrinsics & Intrinsics

1.2 Calibration Target Mesh Model: Icosahedron

Using the model editor, a trajectory was created in the virtual scene with
something called a NurbsPath (it is basically an editable vector with user
desired subdivisions or ‘control points’). This trajectory is shown in Fig. 1.2.1.
The Icosahedron was then constrained to travel along the path specified
by the NurbsPath. The increments in its motion were not synchronized with
the camera shutter as to simulate real world motion blur. This helped us to
pin down the window of rate of change of position of the calibration
target so as to avoid motion blur, the results were desirable. The multi
camera view of the path is shown in Fig. 1.2.2.

User Ortho

Meters
X 14.88852cm ~
1Y: -9.16072cm *
4Z: 5.06704mm *

o
e

XYZ Euler

0.150 *
0.150 »
0.150 »

NI E
N =i 2s
B

57.59cm *
21.597cm
26.816cm »

4 2
fralbed

JE

Object

N
oL

(0) NurbsPath

®© ObjectMode & B 415 L " B N @ &+ B EE

Fig. 1.2.1, Trajectory of calibration target

User Ortho
Meters

X 14.88852cm *
4Y: -9.16072cm *
4z 5.06704mm *

0 »
0° >
0" >

g 4 2
N =28

XYZ Euler

0.150 »
0.150 »
0.150 *»

P
N =28
'J

57.59cm *
21.597cm *»
26.816cm

g 2
N =28

JE

Object

@ N
+|

(0) NurbsPath
GO ERYE]

1.3 Image Capture (100 samples)

The multi-camera locations were locked and the calibration target was
animated to move along the NurbsPath and cameras were scripted to
capture 100 images. The path was chosen such that the calibration target
covered the whole FOV (field of view) of the respective camera. The FOV
of camera 1 is shown in Fig 1.3.1. The rendered FOV of camera 1 is shown
in Fig. 1.3.2. The orientation of the faces on the calibration target is very
specific and this has to mapped exactly to the designated vertices of the
lcosahedron. This mapping has to be exploited so that we know the
geometric calibration is working. So the path was designed in such @
manner that the target changed its orientation in 3D space. Fig. 1.3.3
shows 100 rendered images from the FOV of camera 1 and you can see
how the face angles change throughout.

Camera Persp

Meters

X 57.83795cm *
s -1.09725m *
< Z 30.79376cm *

0.840 *
X 0.535 »
Y 0.052 »
Sz 0.081 »
Quaternion (WXYZ)

||Ii III
| | O

oX 4.932
Y 4.932
< 4,932

|

Object

Camera.000

(37) Camera.000

Fig. 1.3.1, FOV of Camera 1(Not Rendered)

1| Done | Path Tra mple 4

YZ Euler

Fig. 1.3.2, FOV of Camera 1 (Rendered)

ImageData > camerad0D_1 v |® | Search camera000_1 »
0001.png 0002.png 0003.png 0004.png 0005.png 0006.png 0007.png 0008.png 0009.png 0010.png 0011.png 0012.png

0013.png 0014.png 0015.png 0076.png 0017.png

001%.png 0020.png 0021.png 0022,png 0023.png 0024.png

0025.png 0026.png 0027.png 0028.png 0029.png 0032.png 0033.png 0034.png 0035.png 0036.png
. ! 0039.png

0051.png 0055.png 0056.png 0057.png 0052.png 0059.png 0080.png

0051.png 0062.png 0067.png 0068.png 0059.png 0070.png 0071.png 0072.png

0076.png

0072.png 0074.png 0081.png 0082.png 0083.png 0084,png
S
0080.png 0093.png 0094.png 0095.png 0096.png

Fig. 1.3.3, 100 Images (Post Rendering)

1.4 Exporting Camera Instrinsics & Extrinsics

The camera Intrinsics and extrinsics were exported from blender using
python. The script is shown on the left and the output on the left in Fig. 1.4.
The mesh data of the calibration target is exported in form of surface
normals and centre of the faces.

CAMERA INTHINELCS

Cenera.B8e

focal length = 36.068883&mn

sensor width = 14.13128@mm

sensor height = 18.358888mn

Resolution (Width x Height) = 409G.00230003000.000008 px

Camera. 81

tocal length = 30.000888mn

sensor width = 25.408888mm

sensor helght - 13.009¢¢0Gmn

Resolution {Width x Height) = 4096 .200DDEN3000.2E00D0 px

Canera. @62

focal length = 36.668883mnm

sensor width - 25.400083mn

sensor height = 18.0086868mn

Resolution (Width x Height) - 4096.00D000X3000.000000 px

CAMERA EXTRINGLICS

(amera.@8@ is located at:
Cartesian

¥ = 57.837%4Bom

y = -189.72484Ecm

z = 38.793758om

Quaternion

W = 8.839586
¥ = B.534598
y = B.85138@
z = 8.881353

Camera.Bil is located at:
Cartesian

x = 73.2388%Ecm

y = 18.83537dcm

r = 5.33379€cm

Quaternion
W= B_324193
® = 0.286426
¥ = 0495845
z = B.778731

Comera B82 is located at:
€

) target_deta b - Motepad
File Bt Fomnal View Help

Image Number @

Mormal of Face B is: <Vector (BU1876, -8.5774, -8.7347)>
Mormal of Face 1 iz: <Vector (@.6071, ©.0000, -0.7247)>
Mormal of Face ? is: <Nector (-B.4911, -8.3568, -8.7947)>
Mormal of Face 3 dis: <Vector (-8.4911, ©,3568, -@.7347)>
Mormal of Face 4 §s: <Vector (B.1876, @.5774, -8.7947)>
Mormal of Face 5 is: <Vector (0.9822, &.8008, -0.1876)>
Mormal of Face B is: <Vector (-9.794&6, -0.5774, -8, 1EF6)>
Mormal of Face 7 is: <Vector (-B.7948, 8.5774, -B.187R)>
Mormal of Face B iz: <Nector (0.30835, &.9342, -9.1878)>

Mormal of Face 9 is: <Vector (B.7946, -B.5774, B.1E76)>
Mrrmal af Cacn 40 dr: olncten {0 3090 0 OFA7 & 10B7E%.

Fig. 1.4, Exporting blender data

There were no challenges yet. But as the number of Cameras in the scene will
increase, challenges in computational power can be expected in the future.
The solution for tackling this is building our own render farms by slaving multiple
GPU’s to one master computer and distribute the rendering over these GPUs.
Another solution is renting render farms (a.k.a. online servers) online and using
them to compute the images. The second option is less work, but the former
option is just so cool. Though | think Oculus will lean towards the second option
i.e. using online server farms.

The project work was divided among the team members and the task was
assigned according to the strengths of the team members. The task division has
been listed below in Table 3. The divided tasks can be completed in parallel;
hence others can pitch in when some team members fall behind in their work.

Team Member Task
Huan-Yang Chang Robot Studio Un-optimized Path generation
Siddarth Raina Formulating metrics for effective noise

suppression or removal

Man-nig Chen Color Calibration: Macduff technique

Yiging Cai Test trajectory for sampling using 4 cameras
and creating heat map to demonstrate
coverage of FOV

Sambuddha Sarkar Trajectory generation, multiple image capture
and exporting data from the virtual scene.

Table 3, Task Division.

4. FUTURE PLANS

My future plans until the next progress report is to come up with a pipeline
for image generation using blender. Also exporting the face pattern
geometric data to validate the geometric calibration algorithm. The
development and deployment of this pipeline will take about 90 days.

5. BONUS: IMAGE RENDER SAMPLES

Some image samples from the 100 sample range. (showing the
drastic changes in the orientation of the target to test the robustness
of the geometric calibration algorithm: this is from camera 2)

