
	
	

16-682 - MRSD Project II | ILR #09
Individual Lab Report #09 |March 23, 2017

SAMBUDDHA SARKAR

Team G

eXcalibR

Huan-Yang Chang
Man-ning Chen

Sambuddha Sarkar
Siddharth Raina

Yiqing Cai
	
	
	

	
	

1. INDIVIDUAL PROGRESS

1.1 Overview

In this ILR I don’t many visuals or results to show as most of the work has
been on the back-end of blender’s python API, writing custom scripts to
include functionality and ease of use required for validation of the
geometric calibration algorithm.
 The virtual environment is being modeled in an open source platform:
Blender 3D 7.68a. It is a Maya based platform and is programmable by
Python 3.

Topics covered have been listed below for a quick overview.

1.2 Mapping the geometric locations on the checkered pattern
1.3 Blender Render Pipeline Status

1.2 Mapping the geometric locations on the checkered pattern
The task of physically relating the coordinates of the checker pattern on
the calibration target to the world frame and/or reference points is crucial
to validate the geometric calibration algorithm. Though it may seem to be
an easy, to assign and compute the transformations of the different faces
of the icosahedron with respect to a reference (world frame or local
frame), it isn’t when it comes to making it part of a user-friendly pipeline.
The image in Fig.1.2.1 shows a snapshot of some of the faces of the
calibration target with different local frames of reference.

The process of marking the geometric locations of the face patterns
involves the assignment of a local reference frame on the calibration
target (any one vertex of the target), then assigning each face of the
target a local reference frame and finally relating all these frames to the
world frame. The reference frame for each individual face is set
according to some parameters relating to the geometry of the calibration
target itself. The Z axis is aligned along the face normal, the X-Y axes are
chosen such that each face’s geometric pattern can be described using
just on single description file.

	
	

The description file output (with custom .dsc, .calib extensions) which has
been generated using the bpy module I have written and developed has
been shown below in Fig. 1.2.2. The Fig. 1.2.3 gives an infographic on what
each parameter means (like the April tag information of each face.).

Fig. 1.2.1, Snapshot of pattern.

Fig. 1.2.2, Descriptor Output.

APRIL TAG

	
	

The first 2 lines in the descriptor output correspond to the face
identification. The rest are the coordinates of the corners of the calibration
pattern in local frame of reference of each face of the target. Fig. 1.2.3
elaborates with an infographic.

Padding: (X & Y local axis)
Print preset: Pattern printing information relating to tolerances in terms of
microns
ID: Local ID of vertices of pattern for validation recall
(X, Y, Z): Locations of vertices in local XYZ coordinates

Fig. 1.2.3, Legend of Information.

1.3 Blender Render pipeline

The blender rendering pipeline (Fig 1.3.1) is being developed to aide semi-
autonomous generation of image data sets for the geometric calibration
algorithm. The calibration pipeline illustrated is self-explanatory. The
pipeline loads in camera data (intrinsics & extrinsics), object data
(calibration target), required configuration and the number of the
cameras and the render settings. It spews out Images and other mesh
data using the cycles render engine and bpy module. The current
progress is shown in Fig. 1.3.2.

The light coloration is to imply that the task has been inherited since the
last PR.

1. Face ID, #Padding, #Print-Preset

2. #April Tag ID, #Print-Preset

3. ID-V1, ID-V2, ID-V3, X,Y,Z

	
	

Fig. 1.3.1, Overall Pipeline.

Fig. 1.3.2, Current progress on the pipeline.
2. CHALLENGES
The main challenge is the extraction of crucial data from the blender
environment using the python API. It is time consuming as I have to go through a
lot of documentation to figure out how data was being stored and handled.
Thus accessing, modifying and creating data inside the blender environment
using scripts is a long process. It so happened that I accidentally corrupted a
native blender filesystem relating to the libraries which stores the 3D mesh data,
and in doing so corrupted all my back-ups in one stroke.

	
	

3. TEAM WORK
The project work was divided among the team members and the task was
assigned according to the strengths of the team members. The task division has
been listed below in Table 3. The divided tasks can be completed in parallel;
hence others can pitch in when some team members fall behind in their work.

Team Member Task
Huan-Yang Chang

Path optimization for ABB Robot arm.

Siddarth Raina Shot Noise and PRNU correction.

Man-nig Chen Color Calibration: Mapping function.

Yiqing Cai Multiple Camera Model: Scoring heuristics for
the original path.

Sambuddha Sarkar

Blender Render pipeline and pattern mapping.

 Table 3, Task Division.

4. FUTURE PLANS

My future plans until the next progress report is to complete the porting
modules for import and exporting geometry data in and out of blender.
Most of the work is being conducted in the back-end of blender using the
blender-python API (bpy) so the results may not be tangible
representations of the actual amount of work being done.

