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Abstract 

This document includes details on Critical Design Review of the project undertaken by Team C 

under the MRSD Project 1 course conducted during Fall 2017. MRSD Project course is a core 

element of the MRSD program at Carnegie Mellon University, and allows students to work in 

teams towards a common goal of developing a robotic system which can be used in an identified 

problem scenario. This document summarizes the activities carried out by Team C – FlySense 

during the Fall semester to develop their Augmented Reality based assistive technology aiding 

aerial navigation. 

 

The report begins with a basic description of the project, highlighting the need for the assistive 

system, followed by a use case that clearly depicts how the system will be used. A list of system 

level requirements, both performance and non-functional are presented. The approach is 

graphically represented in functional and cyber physical architecture. 

A detailed description of the current system status is also provided, starting with design 

requirements that were targeted during the fall semester, the underlying implementation to fulfill 

each of those requirements and how they were evaluated in the Fall Validation Experiment. The 

report then shifts to the project management section, comprising of the Work Breakdown 

Structure, schedule for spring semester highlighting the major milestones for each progress review 

and the final Spring Validation Experiment tests. The project management section details the 

budget and an update on risk management. The report concludes with the key takeaways from the 

fall semester and an outline of key activities for the spring. 
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1. Project Description 
Helicopter pilots have one of the toughest jobs in the world. Their jobs are usually task and sensory 

saturated, with limited ability to process new information and many different controls to be used 

in an instant. However, there aren’t many aids for helicopter pilots that present useful information 

in a relevant way. The U.S. military has invested millions of dollars in state-of-the-art headsets for 

conveying all sorts of information to fighter pilots in real-time, but nothing close to that technology 

has been introduced in the commercial domain given the current price point and the focus on 

assisting firing and targeting systems. 

Helicopter pilots face difficulties in different phases of flight and mission types. Some of these are 

low-altitude flights, landing in tight spaces with fixed structures and navigation in low-visibility 

scenarios. Out of the listed flight stages, one of the most critical is a flight at an altitude below 

200ft AGL (Above Ground Level) where, unlike commercial airplanes, there are no autonomous 

piloting features in place to aid with the landing. Helicopter pilots resort to their instruments, but 

above all look for visual landmarks to understand their environment and judge how far they are 

from obstacles. This can be even more difficult when flying in unfamiliar environments, like in 

areas where the landscape is monotonous (e.g. desert, or a grass field) or in situations where it’s 

hard to judge obstacles that can cause a crash (e.g. a pole near the tail rotor). 

  

Through this project, we aim to develop a pilot assistance system using Augmented Reality, that 

gives the pilots enhanced situational awareness in the least intrusive way. With our FlySense 

system, the pilot will be better equipped to handle the difficult flight scenarios mentioned above 

as he will rely on the visual and audio warnings informing him about the possibility of collisions. 

FlySense will offer a high level of assistance through mapping of surrounding obstacles, feasible 

trajectory to the destination avoiding those obstacles and low-level autonomy to override bad 

decisions by the pilot.   

2. Use Case 
Lori is an EMS helicopter pilot operating out of the University of Pittsburgh medical center in 

Oakland.  She’s an experienced pilot who has been doing this job for over 10 years, doing hundreds 

of flights every year to rural areas of Western Pennsylvania bringing patients to get treatment at 

the world-renowned UPMC Hospital.  On this day, she arrives for her shift bright and early at 6 

am ready to go at a moment’s notice. As soon as she’s grabbed a cup of coffee, an alert comes in 

from the dispatcher. “We have multiple severe injuries in a multiple vehicle collision on highway 

30 near Clinton.  I’m sending in the GPS coordinates now, we need an EMS helicopter for the 

victims as soon as possible!” 

 

Lori grabs her gear and heads out to the helicopter. Upon reaching the helicopter, she does a quick 

walk around and proceeds to the cockpit for his preflight checks.  She grabs her FlySense visor 

and turns it on.  Within seconds the headset boots up.  After a 10 second calibration procedure, a 

couple options pop up. With a quick verbal command, Lori selects a trip planning view and enters 

in the GPS coordinates on the flight computer. 
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Figure 1: EMS helicopter pilot at the ready 

As she goes through her checklist, the FlySense headset gives pointers on the current state of the 

helicopter.  Today, the helicopter appears to be in fully working condition: it just came back from 

its regular maintenance and there are no problems reported.  All told, the assistive system 

integrated into the helicopter allowed Lori to complete her complete checklist in about half the 

time it would take here without it, even with her years of experience.  

 

As she starts to take off, a member of the grounds crew sets off her obstacle alarms as he runs 

across the helipad.  She couldn’t even see him herself from her vantage point, so it was a good 

thing she had full coverage visually and with sound warnings from the Bird’s eye view, which 

automatically popped up in the takeoff sequence.  

 

Once Lori ascends to 200 feet, she engages the autopilot. This makes her job a lot easier, but her 

FlySense display is still active on “Heads Up Display” view.  It gives her constant updates on her 

attitude, altitude, and a view of the horizon, even as she goes through a couple low hanging fog 

banks.  It also shows her location of flying vehicles around her and what path to take to reach the 

destination all within the HUD mode. The flight was going smoothly until she reached the 

destination and had to find a good landing spot (Figure 2). 

   

The accident she is responding too has swarms of EMS vehicles around the crash, and a set of 

power lines and multiple trees are surrounding the area, making it a little tricky to come in.  Lori 

tells the computer “Guide me in the open area between the police car and the fire truck.”  Within 

moments, a guided trajectory comes up in her view.  As she descends, she toggles briefly to the 

Bird’s eye view to check her distance to the power lines, but those are only yellow, without any 

sound warnings, so she knows she is clear but to stay careful.  

 
Figure 2: Lori trying to land on at a congested highway accident scene 
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As soon as she touches down, her medical crew springs to action and gets 2 patients aboard the 

helicopter in minutes.  They need to make it back to UPMC as soon as they can since both patients 

have lost a lot of blood and they only have limited medical resources to cope with that on the 

helicopter.  Lori guides the helicopter backwards outside of the area of trees and power lines, 

relying heavily on her bird’s eye view to safely extricate her helicopter from the tricky situation, 

even as the wind starts picking up dramatically.  Once safely up and preventing a dangerous crash, 

Lori guides the helicopter and the patients back to the medical center. 

 

As Lori gets closer to the medical center, there is much more air traffic in the area.  She gets 

warnings and recommended adjustments to her route through the map and path planning interface, 

with vectors around the display showing the relative positions of other aircraft nearby using ADSB 

signaling.  Lori adjusts the trajectory, slowing down and hovering to allow another helicopter clear 

out of her approach path at the hospital.  It seems like she’s not the only one taking patients to the 

hospital for treatment today. Now with a clear path, she can make her approach smoothly and 

safely, getting the patients directly to the helipad, where medics rush out to give patients the needed 

treatment.  

3. System Level Requirements 
To accomplish the design, development and ultimately deployment of the system, the team is 

following a systems engineering approach. The system requirements were defined at the beginning 

of the project after careful analysis, research and deliberations among the team and stakeholders. 

All the effort of the team is directed towards fulfilling these requirements. 

The requirements presented during the Preliminary Design Review(PDR) have been updated based 

on the feedback received from various stakeholders and observed system’s performance during 

the Fall Validation Experiment. Specifically, some of the requirements have been made more clear 

and specific in terms of what the pilot is supposed to see and how pilot performance improves with 

the FlySense system over a non-aided pilot. A couple of requirements have been changed from 

Desired to the Mandatory category. None of the requirements have been deleted.  

Each requirement is mapped to a subsystem (Aerial or User). Also, the requirements marked with 

an asterisk (*) are the ones modified or added and justification for these modifications is given in 

the adjacent column.  

3.1. Mandatory performance requirements 

Subsystem  Description Justification 

Aerial M.P.1 Receive, and process point cloud data 

from one Velodyne VLP-16 

 

User M.P.2* Recognize 5 voice commands with an 

accuracy of 90% without noise and 

70% with noise 

Accuracy numbers increased 

and an attempt to make it 

work in noisy environment 

Aerial M.P.3 Detect obstacles in the flight envelope 

projected 5 seconds into future 

 

Aerial M.P.4 Detect obstacles of size greater than 

2m x 2m located at distances less than 

10m 
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Aerial M.P.5* Generate Bird’s eye view image in 

vehicle frame at a rate of at least 10Hz 

Frame rate decreased from 

25Hz to 10Hz, due to 

communication limitations 

Aerial M.P.6* Color obstacles in bird’s eye view (red, 

yellow, green) based on pilot inputs 

and time to impact. Red corresponds to 

the lowest time to impact, then yellow 

and then green. 

No major change, few details 

added. This requirement was 

earlier written as “Segment 

flight envelope into safe and 

unsafe”. 

Aerial M.P.7* Recommend feasible trajectory to goal 

maintaining clearance of at least 1m 

from all obstacles, and display in AR 

interface   

Added requirement based on 

inputs from stakeholders. It 

was in the Desired category 

earlier. 

Aerial M.P.8* Override pilot commands to stop the 

aerial system at least 1m before the 

obstacle 

Added requirement based on 

inputs from stakeholders. It 

was in the Desired category 

earlier. 

User M.P.9* Render all modes on the AR interface 

at refresh rate of at least 10Hz 

Frame rate decreased from 

25Hz to 10Hz, due to 

communication bandwidth 

considerations. 

User M.P.10 Generate binary audio, left or right 

based on the obstacle with latency less 

than 1 sec 

Added details 

3.2. Mandatory non-functional requirements 

Subsystem  Description Justification 

User M.N.1* Easily set up (within 1 minute) by a 

single operator  

Removed the requirement for 

the system to be able to 

integrate with NEA flight 

system. This is done keeping 

in mind time constraints. 

User M.N.2 Feel natural to the pilot, i.e. Project 

images at focal distance up to 20 

meters 

 

User M.N.3 Wearable like normal glass  

User M.N.4 Comfortable to wear headwear for 

long periods of time, i.e. should 

weigh less than 1 pound. 

 

User M.N.5 Displays information in a clear and 

simple manner. 

 

User M.N.6 Be non-intrusive to the pilot, i.e. pilot 

should be able to see through the 

projected images.  

 

User M.N.7 Be non-distracting for the pilot, i.e. 

pilot should be able to engage or dis-

engage the system as and when 
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desired and with simple voice 

commands 

Aerial M.N.8 Solution hardware is more affordable 

than available solutions (Cost below 

5000 USD) 

 

3.3. Desired performance requirements 

Subsystem  Description Justification 

User D.P.1* Voice commands personalized to 3 

users 

New requirement. Added to 

increase the accuracy of voice 

command recognition 

Aerial D.P.2* Override pilot commands to 

maneuver around obstacle 

maintaining radial clearance of at 

least 2m   

New requirement. Helicopter 

pilots are interested in override 

features to increase safety. 

User D.P.3* 

First Person View (FPV) video 

overlay on the AR interface at frame 

rate greater than 10Hz 

New requirement. Added to be 

able to validate other 

requirements. This would 

allow the pilot to fly with and 

without the FlySense system. 

Aerial D.P.4* 

Segment obstacles into 2 categories 

(Trees or building) 

New requirement. This was 

suggested by one of the 

stakeholders, to reduce 

cognitive load on the pilot.  

3.4. Desired non-functional requirements 

4.  Functional Architecture 

The updated system requirements were used to update the functional architecture, which is shown 

below in Figure 3. The complete system operation is depicted in a block diagram capturing 

functions and overall flow of information. Here, we have divided the system into 3 stages which 

are happening continuously and concurrently. These are: 

a. Pilot/flight:  

i. Pilot voice commands: These are received directly and are used as a way for the 

pilot to interface with the system. As pilots are saturated with switches and controls, 

voice commands provide an intuitive way to interact with the system. 

ii. Flight system: It provides sensor data from IMU, GPS and LIDAR and the pilot 

commands. It also provides a way to override pilot, if an obstacle is in the 

immediate path of the flight system. 

Subsystem  Description Justification 

User D.N.1* Easily customizable to include more 

features and widgets 

New requirement. Not aiming 

for spring. 

User D.N.2* Ability to integrate with flight 

simulators to train pilots 

New requirement. Not aiming 

for spring. 
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b. Process/Plan:  

i. Received sensor data and video and publish. 

ii. The sensor data is also used to detect obstacles in the flight path. 

iii. The state of the vehicle and detected obstacles are used to find a feasible path. 

iv. The obstacles and feasible trajectory is incorporated as a bird’s eye view image 

v. Override pilot commands if obstacle in the immediate path of flight system. 

c. Output/Convey: 

i. The sensor information and video are rendered in the User system 

ii. The detected obstacles are used to generate sound warnings 

iii. The feasible trajectory and feasible path is rendered as bird’s eye view  

 

 

Figure 3: Functional Architecture 

5. Cyber-Physical Architecture 
The functional architecture was used to update cyber physical architecture which is shown below 

in Figure 4. The cyber-physical architecture delineates the functions among different subsystems 

and goes into details of implementation on a higher level. It also explains the decisions taken based 

on the trade-studies to identify components, algorithms, etc. 
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Figure 4: Cyber-physical Architecture 

Our system has 2 subsystems (Aerial and User). The aerial subsystem is further divided into 3 key 

components. These are DJI M100 quadcopter, Jetson TK1 computer, Pilot. Each of these 

component/subsystems is described below: 

a. Pilot: Pilot is responsible for two main functions. 

i. Flying the quadcopter 

ii. Giving the voice commands to switch between available assistance modes in the 

AR headset 

b. DJI M100 Quadcopter: This is the flight system selected for capability demonstration: 

i. To publish the pose estimates, LIDAR data as ROS messages. 

ii. Receive commands to override pilot inputs 

c. Onboard computer Jetson TK1:  

i. Calculate Flight Envelope: The flight envelope is calculated from the received pose 

estimate and pilot inputs. This is the addressable area around aircraft where aircraft 

can reach in 5 seconds. This does not include sudden malfunction/crash. 

ii. Filter Point Cloud: The flight envelope calculated is used to get rid of the extra 

point cloud data. This is done to reduce required onboard processing. 

iii. Detect obstacles: The filtered point cloud is then used to identify the obstacles in 

the flight path. 

iv. The obstacle with least time to impact: Among the obstacles detected, obstacles 

with least time to impact is calculated and used to generate sound warnings. 
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v. Generate feasible trajectory: The obstacles detected are used to generate a feasible 

trajectory. 

vi. Bird’s eye view: The obstacles detected, and feasible trajectory are combined to 

generate a bird’s eye view image. 

vii. Override pilot commands: The pilot commands are modified if the detected 

obstacles are in the immediate path of the flight system. 

d. User System: Epson BT300 AR headset has been selected after conducting trade studies. 

i. Switch between widgets: Pilot voice commands are recognized by the AR headset 

to switch between widgets (assistive modes). 

ii. Render HUD, Horizon and FPV video: The sensor information and video received 

from the onboard computer are rendered. 

iii. Generate sound warnings: The sound warnings are given to the pilot as beeps. 

iv. Render Bird’s eye view: The bird’s eye view generated by the onboard computer is 

rendered. 

6. Current System Status – Target Requirements 
For the fall semester, a subset of the system requirements was targeted. These are shown in Figure 

5. The aim was to show the two subsystems working together as one unit with the all the basic 

features deployed. These basic features were also the most critical one in the FlySense system, as 

these were picked by helicopter pilots based on their flying experience. All the requirements 

presented during the Preliminary design review were met by the system. The quadcopter was 

mounted on a rolling cart for Fall semester. This was done to reduce the burden of flight testing 

and to allow the team to setup the complete software framework without worrying about 

integration and testing related problems.  

 

Figure 5: Targeted System Requirements (Fall) 
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7. Current System Status - Subsystem Descriptions 
Our final system consists of 3 major subsystems as shown in Figure 5. These are: 

● Aerial subsystem – A DJI Matrice 100 mounted with Velodyne VLP-16, FPV camera, 

onboard computer Jetson TK1 and our custom power distribution board. 

● User subsystem – The Augmented Reality headset Epson BT 300 and another audio 

headset for sound warnings and voice commands. 

● Communication subsystem (COTS)– A 5 GHz Dual Radio Base Station with MIMO 

technology. No development required in this sub-system. 

 

Figure 6: System diagram 

The implementation and status of each of these subsystems is described now keeping in mind the 

requirements outlined in section 6. Also, the green ticks in the images indicate that the requirement 

has been completely met, yellow indicates that the work is in progress. 

7.1. Aerial subsystem 

The Aerial subsystem encompasses multiple software and hardware components.  

The software architecture for the aerial subsystem is shown in Figure 6. The software architecture 

has been developed keeping in mind the testing and safety constraints associated with flying an 

aerial system. We have setup a way to test the system by feeding in data from a recorded bag file. 

This allowed us to record the data once in our mission scenario and use it continuously to fix minor 

bugs which would be difficult to fix if we were to move on to live operation directly. It also helped 

us as a team as an individual developer were able to test software components with minimum 

dependencies. 

The architecture is shown in Figure 6 also includes the software components that will be 

completed during the spring semester, namely, pilot override and recommending the feasible path 

to the pilot. The software architecture would have to updated to incorporate a way to do flight 

simulation to test the pilot override feature offline in a safe virtual environment. 

The key hardware components that were developed were: 

1. Power Distribution Board PCB 

2. Rolling cart setup for Fall Validation Experiment 
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The key elements of the aerial subsystem are described in detail now: 

 

Figure 7: Aerial Subsystem Software Architecture 

7.1.1. Onboard computer interface to DJI Matrice 100 

The DJI Matrice 100 provides a way to interface to external computers via a serial port. This 

interface was utilized to setup a robust communication interface between the quadcopter and the 

Jetson TK1. The goal for the fall semester was to be able to publish a tf tree which is required by 

other software routines working with LIDAR point cloud data. We also wanted to publish basic 

telemetry information to the AR headset so that it can be shown live in the Headset as part of the 

Heads-up-display(HUD) widget.  Figure 7 shows an overview and status of this interface. 

 

The attitude information received from the DJI quadcopter followed different frame conventions 

compared to what was required for the AR headset. The sensor information was therefore 

converted from ENU(East-North-Up) frame to NED(North-East-Down) frame and then published 

to the AR headset. 

 

All the requirements mentioned above were satisfied. Pilot override is a new requirement and will 

be addressed in the spring semester. 

 
Figure 8: Onboard computer overview 
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7.1.2. Filter point cloud based on flight envelope 

To reduce the processing load on the onboard computer, the point cloud received from the 

Velodyne LIDAR is filtered based on the flight envelope of the aircraft. We have defined flight 

envelope as the addressable area surrounding the vehicle where aircraft can reach in next 5 

seconds. 

The flight envelope at a given time instant is estimated based on the current state of the vehicle 

and the pilot inputs. Assuming a vehicle starting from rest, the addressable region changes from a 

circular envelope to an elliptical envelope. Taking into consideration a safety clearance and ease 

of implementation, the flight envelope has been approximated as a cuboidal envelope surrounding 

the ellipse. The flight envelope algorithm is depicted in Figure 8. 

 

Figure 9: Dynamic flight envelope calculation diagram 

The above algorithm was implemented using a cropbox filter from point cloud library. Another 

cropbox filter was implemented to filter the points captured from parts of the vehicle frame. Figure 

9 shows raw point cloud and filtered point cloud based on flight envelope. 

 

Figure 10: PCL processing before and after 
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7.1.3. Obstacle mapping and Bird’s Eye View generation 

The obstacle mapping and bird’s eye view generation pipeline is shown in Figure 10. The raw 

point cloud received from Velodyne LIDAR is first filtered based on the flight envelope. This is 

described in the above section. Then the density of the filtered point cloud is further reduced using 

voxel down-sampling. The down-sampled point cloud is used for 3 purposes: 

a. Sound warning generation Generates the sound warnings by finding the obstacles with least 

time to impact. It uses the Velodyne heightmap package to convert 3d points into 2d points 

and then iterates through every point to find if the point is in vehicle path and calculate the 

time to impact to that point. The point with the least time to impact is used to generate 

sound warnings. The sound warnings are given in the form of repeated beeps. The 

frequency of beep is high if time to impact is less, thus conveying the severity of the 

situation. We have divided the time to impact into 3 levels such that change in beeping 

frequency is distinguishable. 

b. Bird’s eye view: The buffered point cloud is transformed from the vehicle frame to the 

world frame. It is then buffered 3 times and transformed back to the vehicle frame. The 

top-view of the points is taken as an image. 

c. Trajectory planner: The buffered point cloud is fed into the octomap package which finds 

and keeps tracks of obstacle locations in a 2d map. The goals here is to be able to generate 

a feasible trajectory which will be recommended to the pilot.  

 

Figure 11: Obstacle Mapping pipeline 

Apart from the trajectory planner, everything else was demonstrated during the FVE. The 

trajectory planner and obstacle occupancy map generation are still in progress and are required for 

our spring semester goals. 
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The status of the whole pipeline is shown in Figure 11. The figure shows the heightmap which is 

being used for the sound warning generation, the bird’s eye view image with a red blob (aircraft) 

in the middle and the obstacle occupancy map generated using octomap. 

 

Figure 12: Mapping pipeline status 

7.2. User subsystem 

The user subsystem consists of the Epson BT 300 AR headset which displays information to the 

pilot without obstructing his view and an audio headset that provides sound warnings and receives 

voice commands. 

 

The user interface consists of three widgets (assistive modes) namely, Home screen, Heads-up-

display, Bird’s eye view. The system gets activated when Pilot gives the voice command 

“Computer”. It then shows the available assistive modes which can be switched during the flight. 

The pilot can activate the Home screen by saying “Alpha”, HUD widget by saying “Bravo” and 

the bird’s eye view by saying “Charlie”. By default, the system starts in Home screen.  

There are 5 key elements in the User interface which are explained below: 

1. Voice commands: To keep our user interface easy-to-use and intuitive, it was important to 

implement voice commands. This allows pilots to stay busy with flying without getting 

worried about an extra set of buttons. We have implemented 4 voice commands, which 

work reliably in the noise-less environment. The goal is to increase the accuracy of voice 

command recognition in a noisy environment by personalizing it to the pilot’s voice. This 

work will be done in the spring semester. 
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2. Home screen: As listed in the performance requirements, we have an uncluttered home 

screen for the user interface with buttons to the corner without interfering with the pilot’s 

vision. 

3. Heads-up-display: The heads-up-display gives only the relevant sensor information to the 

pilot. The information includes the vehicle’s orientation in terms of roll, pitch and heading, 

ground speed, time to impact to the nearest obstacle 

4. Bird’s eye view: The bird’s eye view accurately depicts the environment around the 

vehicle. Bird’s eye view is capable of showing the finer details of the surrounding 

environment like trees, buildings, etc. 

5. Sound warnings: Based on time to impact and location of the obstacle, sound warnings are 

generated in either left or right ear. If an obstacle is in left vehicle direction warnings are 

heard in left ear and if an obstacle is in right of the vehicle direction, warnings are heard in 

the right ear. This feature has been found to work reliably well on the ground. We will do 

more tests to check the performance in flight. 

 

Figure 12 shows these widgets as they were demonstrated during the FVE. We were able to 

complete all the requirements that were set out for the user system for Fall semester. 

 

Figure 13: User interface as demonstrated in the Fall Validation Experiment 

7.3. Modeling, analysis, and testing 

The aerial subsystem and the user subsystem were tested independently and together. 

7.3.1. Aerial subsystem 

The aerial system was mounted on a cart for the FVE (Figure 13a), so the system was modelled 

to address the issues in a two-dimensional space. The movement of the aerial system provides the 

AR headset with flight information such as heading, roll, pitch, ground speed and time to impact 

with the nearest obstacle. It also provides, live view of obstacles as a bird’s eye view image and 

binary sound warnings (Left or Right).   
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The system was powered by the drone using an onboard power distribution board (Figure 13b). 

The tests were conducted outside the NSH building which involved: 

1. Pushing the cart around obstacles to check the accuracy of sound warnings and the bird’s eye 

view image 

2. Tilt and turn the cart to check if the heading, roll and pitch information is being updated at 10Hz. 

 

Figure 15: FVE Test Diagram 

The map in Figure 14 shows the path of motion with start/start markers, arrows pointing towards 

the direction of motion and obstacles in red.  

 

Figure 16: Sound warning generation diagram 

The image shown above (Figure 15) describes the sound warning generation conditions, that the 

obstacle should be in the path of the system. 

Figure 13a: Mechanical test setup Figure 14b: Power Distribution board 
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7.3.2. User system 

The user system is modelled such that the pilot feels natural interacting with it. In order to achieve 

the required standards, rigorous testing strategies were employed which helped us in accurately 

assessing the performance of the system. The team performed tests for 50 iterations in noiseless 

and noisy environments to check the accuracy of the voice command recognition system. 

The system was tested for: 

• Recognizing the words and performing suitable action 

• Recognizing incorrect word 

o Rejecting Garbage before activation 

o Rejecting Garbage after activation 

List of words: 

FlySense Dictionary 

• Computer: Activation Word 

• Alpha: Home Screen Command 

• Bravo: HUD Command 

• Charlie: Bird’s Eye View Command 

• Test Garbage 

o Beta, Gamma, Jarvis, Jetson, Delta, Startup (we can test any garbage word) 

 

Figure 17: Voice Commands test sequence 

 

Figure 18: Voice commands test sequence, before activation 
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Figure 19: Voice commands test sequence, after activation 

Each word is considered a state and only a correct recognition will lead to toggling between the 

states. Correct toggling between states gives a score of 1 and incorrect toggle or no toggle will 

give a 0. This directly corresponds to the accuracy of the speech recognition system. 

Following the above sequence for 50 iterations gives us the results in Table 1 and Table 2. 

 

Table 1: Results from voice commands tests, no background noise 
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Results in Noiseless Environment: 

• In a noiseless environment, the accuracy of recognizing the activation word is 86% 

• The accuracy of recognizing Alpha, Bravo and Charlie is 76%, 92%, and 90% respectively 

• The overall mean accuracy is 86% 

• Garbage words before “Computer” are completely rejected with an accuracy of 100% 

• Garbage words after “Computer” are all accepted with 0% correct results (none are rejected) 

 

Table 2: Results from voice commands tests, with background noise 

Results in Noisy Environment: 

• In a noisy environment, the accuracy of recognition goes down drastically 

• The accuracy in recognizing the activation word “Computer” is 50% 

• The accuracy of recognizing Alpha, Bravo and Charlie is 58%, 74%, and 68% respectively 

• The overall mean accuracy is 62.5% 

• Garbage words before “Computer” are completely rejected with an accuracy of 100% in static 

noise, all bets are off in dynamic noise 

• Garbage words after “Computer” are all accepted with 0% correct results (none are rejected) 
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7.3.3. Complete system testing 

Static Lidar Test 

Moving Lidar Test 

Out development included a series of Lidar mapping tests, starting with static Lidar Testing in the 

lab and progressing to dynamic Lidar tests outside of Newell Simon Hall. Some key takeaways 

from the initial static Lidar tests were the ground artifacts.  Since we were mainly concerned with 

obstacles surrounding the vehicle sides (at least for these test sequences), we realized that one of 

our processing steps needed to be a PCL cropbox filter to take out the ground plane and avoid 

triggering warnings for the ground.  In our dynamic testing, we realized that the update rate was 

crucial: we were getting a significant lag with our initial mapping tests, so we revised the approach 

and for the Fall validation experiment, implemented a pipeline (described in the subsystem 

descriptions) that down-sampled enough to reduce the lag to an acceptable level. 

The moving lidar test also helped us test the performance of position estimate from DJI M100. 

Figure 20: Static Lidar Test setup (left) and results (right) 

Figure 21: Dynamic Lidar test setup (left) and results (right) 
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8. Fall Validation Experiment Performance Evaluation 
The Fall Validation Experiment was designed such that all the targeted performance requirements 

and most of the non-functional requirements would be tested. All the tests were aimed to be live 

demonstrations outside Newell Simon Hall. Unfortunately, the weather played spoilsport on the 

day of the FVE and we had to change our plans to do a simulation with prerecorded data. The data 

was processed on the onboard computer and the pilot was able to get both the visual and audio 

warnings. It was difficult to get the complete experience as the pilot was not aware of what the 

actual surrounding was, and how our system was assisting him in navigation. Nonetheless, we 

were fully prepared for a live test on the FVE Encore day, even overcoming the snowfall to 

demonstrate the capabilities of our system outside Newell Simon Hall, CMU. 

A brief description of the major tests conducted during the FVE Encore is given below: 

● Test 1 to evaluate voice commands recognition - The pilot gives the activation 

commands along with the toggle word to switch modes on the AR interface. The pilot also 

gives a series of garbage commands and see that the AR interface does not respond.  

 

Figure 22: Pilot with voice commands 

Result- The system was able to recognize the voice commands with a mean accuracy of 

86% in a noiseless environment.  

● Test 2 to evaluate the HUD mode- The pilot switches to the HUD mode, and sees the 

telemetry data coming from the vehicle. The operator tilts the flight system changing roll, 

pitch and heading, and the pilot sees the values update on the HUD. 

Result- The telemetry information was updated on the HUD mode at a refresh rate of 10Hz 

● Test 3 to evaluate the Bird’s Eye View- The pilot switches to the BV mode, and sees the 

vehicle marked red and only the obstacles around the addressable region. The operator 

follows a predetermined sequence shown in Figure 22, with obstacles appearing on the left 

and right side at different instances. The vehicle starts at a location greater than 5.5 seconds 

to impact away from every obstacle, and no warnings are heard. As the vehicle approaches 

the first obstacle on its left, the sound warnings start in the left ear when time to impact is 

5.5 seconds. As the vehicle moves closer, the time to impact decreases and warnings 

become more frequent. Once the vehicle crosses the obstacle, the warnings stop. The same 

scenario happens when the vehicle encounters this obstacle (now on its right) during its 

return course. 
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● Result- All the requirements in this test were successfully completed. The images were 

rendered at 10Hz, which proved very natural and real time to the pilot. The pilot was able 

to clearly distinguish through sound the location of the obstacle, and get a better 

understanding of the environment through the visuals.  

 

Figure 23: Detail of FVE experiment.  From left to right: Location and path taken during the test, 

test as viewed from the ground level, Prof. John Dolan interacting with the user system. 

9. Strengths and Weaknesses 
The biggest strength of the current FlySense system is the user system. The AR headset is very 

robust and works with various lighting conditions. The images are very crisp and projected 20m 

in front of the eye. The visual maps are non-intrusive and provide a clear picture of surroundings. 

The sound warnings are very accurate and real time, with the stereo effect working well. Another 

major advantage is that we have developed a fully integrated system, with the complete software 

implemented and tested. This puts us in a comfortable position for spring semester when we’ll be 

adapting the same to a flying system while deploying some new features. The software architecture 

has been designed to incorporate the new features.  

There are a few weak points in both the user and aerial system. A major drawback is the existing 

voice command recognition system which fails in a noisy environment. This limits the system 

from being deployed in an actual helicopter with background noise. This has motivated us to 

develop our own voice command recognition network, which can give reasonable accuracy in 

noisy environments as well. The sound generation code works only in 2 dimensions, which will 

not work for our aerial system. So, we will be making refinements in our code to incorporate the 

3D navigation environment.  

Based on the feedback received during FVE, the Bird’s Eye View visualization does not convey 

enough information to identify the type of obstacle. This calls for a need to provide some sort of 

symbols (For ex: inverted triangle for tree) in the Bird’s Eye View to aid the pilots better. Another 

issue is the drift in the raw point cloud, which affects the quality of the obstacle map and its visuals.  

The preprocessing stage of our pipeline does not include point cloud registration, which is another 

area to work on. The drift in point cloud also causes the occupancy grid map to be very cluttered, 



22 

 

which might cause random errors in the trajectory planner. The update rate of the obstacle map is 

also slow and must be improved before using it for planning.  

10. Project Management 

10.1. Work Breakdown Structure 

 

Figure 24: Work breakdown structure for the Fall Semester.  Green indicates the work package 

was completed, while yellow indicates that work is still in progress.  The yellow tasks have been 

remapped to new work packages for the Spring semester. 

Work Breakdown Structure: Spring 

 

Figure 25: Work Breakdown structure for the Spring semester 
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10.2. Schedule 

Below we have detailed the schedule for the three main work categories we have for the Spring 

Semester. 
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So far, we are on generally on target for the Spring semester. We were able to accomplish all the 

goals for the Fall experiment.  We are a little bit behind in implementing a final mapping solution 

(we were hoping to have that finalized this semester), but that has become a major priority to get 

done early in the Spring Semester.  We have set major milestones for the middle of February, End 

of February, the end of March and the end of April to aid us in our development cycle. 

 

10.3. Test plan 

 

Milestone Desired Functionality Test Method 

PR7 Quad flying with FPV video 

transmission 

Fly quad at NREC 

Live data transmitted to AR glasses 

PR8 Recommended feasible trajectory v1 

obstacle avoidance v1 

Testing done in simulation 

PR9 Quad flying with trajectory generation 

and obstacle avoidance 

Personalized Voice command v1 

Testing live with aerial platform at NREC 

Round one of user feedback from focus group 

PR10 Trajectory generation v2 

Obstacle avoidance v2 

Testing live with aerial platform at NREC 

Round two of user feedback from focus group 

PR11 Full System integration with AR Test at NEA flight testing location 

Flight testing with AR 

PR12 More integration and testing  
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Spring Validation Experiment test plan 

 

 

Test Procedure 1 Performance Evaluation 

1.Pilot flies the Quadcopter from start to end 

using only FPV video feed and no FlySense 

• Maneuvering time and number of errors (< 1 

m away from wall) measured 

2.Pilot wears FlySense, gives voice commands 

in both quiet and noisy environments 

• 90% accuracy without noise 

• 70% accuracy with noise 

3.Gives command in RC for Quadcopter to 

takeoff, switches AR to BV mode  

 

4.Follows feasible trajectory shown in the AR 

interface to reach end position 

• Trajectory maintains 1m clearance from 

obstacles 

• Sound warnings generated in the correct ear 

• Maneuvering time and number of errors (< 1 

m away from wall) reduced by 20% 

5.Pilot removes FlySense and gives feedback 

on the complete system 

• Comfort, relevance to reality, extent of 

assistance 
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Test Procedure 2 Performance Evaluation 

1.Pilot wearing FlySense gives RC command 

to take off at A 

 

2.Quadcopter follows the feasible trajectory 

seen on AR toward B through C 

• Trajectory maintains 1m clearance from 

obstacles 

3.Quadcopter reaches closer to C, but still less 

than 1m 

• Obstacle shows color transition (green-

yellow-red) based on time to impact 

• Sound warnings generated in correct ear 

when time <5.5 seconds 

4.Quadcopter diverts from feasible path, tries 

to get close to the obstacle but stops 

immediately 

• Quadcopter stops at distance less than 1m 

 

10.4. Budget 
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10.5. Risk Management 

 
Figure 26: Risk diagram as of Preliminary Design Review 

Figure 25 shows the risks that were presented in preliminary design review.  The following results 

came from addressing these risks: 

● (1,2,3,4) risks related to mapping implementation (difficulty and performance).  We 

mitigated this by coming up with alternative methods for getting the obstacle display done.  

We ended up relying on a buffered PCL image to meet our requirements and pushing some 

of the mapping work to the Spring semester. 

● (5) related to delays in the project due to overwork in other classes.  We mitigated this by 

planning on our schedule and supporting one another in common classes, and we were able 

to complete the tasks as intended. 

● (6) related to the robustness of the voice commands. Here we limited our scope to voice 

commands working only in a noise-free environment and took extensive data to validate 

so we weren’t reliant on a live demo working perfectly in an unknown noise environment 

● (7,8,9) risks related to the usability and comfort of the AR headset.  We limited the scope 

of our test to not include wearing the AR headset for a long time but made sure to test the 

usability consistently throughout the process.  We also did a detailed trade study to select 

the right AR headset early in the development process (and switched approaches midway 

through after we realized that the Microsoft Holo-lens would not work for our purposes). 

 

We were able to effectively track and mitigate the risk items that we put a high Risk Priority 

number on but did make some initial miscalculations in evaluating other risks.  We did not put 

effective weight on the communication problems that we ultimately had.  However, once it was 

clear that it could be a major problem, we did a root cause analysis and realized that the DJI 

controller operating on 2.4 GHz was interfering with our Wi-Fi.  To mitigate this risk, we switched 

to a 5GHz router and had multiple routers available to us for the FVE and development testing 

prior to that.  As a result, the demonstration was smooth and predictable. 

As we progress to new challenges, our have been revaluated risks for the Spring Semester, (Figure 

26). 
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Figure 27: Updated risks 

In more detail, the major risks we have identified are: 

● (1) Budget constraints: due to the dangerous nature of outdoor testing with drones and 

expensive hardware, a part failure could cause us to be set back a significant portion of the 

budget.  We are maintaining a reserve of $1000 as a rainy-day fund, but we will be 

monitoring the budget closely, so we don’t have any issues going forward. 

● (8) AR Headset usability: AR headsets sometimes give people headaches, and we will be 

monitoring this in our user tests.  Some adjustments we can make are the screen resolution 

and focal length. 

● (9) Data processing constraints: We have a light airborne system, so we are limited to the 

hardware we can use to power through all the point cloud data we are collecting.  These 

limitations might result in us having a hard time building a detailed enough map, but we 

will try to mitigate this by down-sampling and segmenting where possible and structuring 

the codebase to milk the most efficiency out of the hardware we have. 

● (10) Drone Communications (Wi-Fi): We had this problem right before FVE, and we 

anticipate this could rear its head again.  The extra challenge here is we need a lightweight 

system to put on the drone, constraining the solution space.  We plan to test multiple 

solutions early (in January) to come up with the most robust option. 

● (14) The weight of the Velodyne Lidar makes flying quad difficult: We don’t have a Puck 

Lite, so we will need to be very careful with our weight budget, and take weight out from 

other areas.  We will test the quad by incrementally adding weight (not the Lidar) and 

observing the dynamics before putting the most expensive equipment onboard. 

● (20) Weather prevents testing: We will schedule multiple test sessions to avoid getting 

stuck too much and put work into unit testing via simulation. 

● (23) Voice commands robustness to noise: We plan to mitigate this by improving our 

hardware, using multiple microphones, and implementing a learning algorithm to help 

parse the speech in the noisy environment. 
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11. Conclusions 
 

Key lessons learned 

• Testing a system is much more demanding than testing a single sub-system (e.g. network) 

• Designing for a human is substantially different from designing for a robot (e.g. mapping) 

• Sometimes the simplest possible solution works well (e.g. direct from LIDAR) 

• Time is an extremely scarce resource that needs to be well managed from the beginning 

• Cross-functional tasks need to be planned as early as possible to ensure work bandwidth 

• Requirement ownership is crucial for success (demand vs “sell them to someone else”) 

 

Key spring activities 

• Transfer ground based system to air 

• Improve voice commands 

• Deploy additional planning features and benchmark safety warning features 
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