
Fly Sense

Shivang Baveja
Team C: FlySense

Teammates: Nihar Tadichetty, Joao Fonseca, Harikrishnan Suresh, Nicholas Crispie

ILR 04

November 10, 2017

Individual Progress
In the past two weeks, I have been able to make considerable progress with the onboard

computer software. There were multiple aspects of the work done which are detailed as

follows:

1. Onboard software architecture:

Figure 1 Onboard Software Architecture

The onboard software architecture is shown in figure 1. It was developed by keeping the

following goals in mind:

a. Modularity:

Since the onboard software will later be put on the NEA’s flight system. It is

important to have an interface which allows receiving data generated in NEA’s flight

system or from our flight hardware. Also, to avoid testing with the flight hardware

every time we need to test a sub-system, it is important to be able to receive

recorded data from earlier flights. These flight data could be from NEA flight system

or on our flight system.

It was also important to keep the AR interface node separate so that there’s no

change later in this node. Any change in our custom communication protocol

requires change only in that node.

b. Setup a framework where software developed by other team members can fit in.

The mapping node is responsible for generating the obstacle map and publishing it,

which is further processed by the coloring node. Coloring node is where the

obstacles in the bird’s eye view image are colored based on time to impact and

relevant audio warning messages are generated.

2. Preprocessing node

The preprocessing node is responsible for following:

a. Receive argument “flight mode”, which can either be flight mode or simulation

mode.

b. If in sim mode, use the topics published by playing the recorded flight data from a

rosbag file.

If in flight mode, start Velodyne driver which published the point cloud. Also start

the DJI_SDK driver, which interfaces with the DJI Matric 100 flight controller.

c. Calculate the flight envelope based on telemetry data received from flight controller

(attitude, altitude, and speed, pilot inputs).

d. Filter the point cloud to keep only the points in the flight envelope.

e. Publish TF tree for mapping node.

f. Publish odometry for the mapping node.

g. Publish telemetry for the AR interface node.

3. Filter point cloud based on Flight Envelope:

It is important to filter the point cloud data if we wanted to accomplish obstacle map

generation onboard the quadcopter. To accomplish it there are two aspects to it which

are described now:

a. Flight envelope computation: We realized that it is difficult to precisely model the

dynamics of the quadcopter, but we still wanted a way to keep only relevant points

among 300,000 points that are received every second. For flight envelope, we

wanted to compute the addressable area surrounding the aircraft where aircraft can

reach given max pilot input commands. This simplified the problem as we don’t

need to understand copter dynamics at any instant but only the final reach in each

amount of time. The problem was further simplified as the DJI flight controller limits

the pilot’s inputs and speed of the copter.

Joao has been able to develop the first version of dynamics model based on

translation which will later be extended to include rotation. I have been assisting

him in defining the problem. It was important that the flight envelope is a cuboid

and not an ellipsoid for the purpose of simplifying filtering process in software. I

gave him an idea of quadcopter flight modes and what all information is available

from the flight controller and what is not available.

b. Filter point cloud: I did some research to find efficient ways to filter the point cloud

and came across cropbox filter from Point cloud library. The ROS implementation for

this filter wasn’t documented which took some time to figure out. Another

important aspect while using this filter was to be able to dynamically configure the

xmin, xmax, ymin, ymax, zmin and zmax parameters of the filter so that we can filter

the point cloud based on flight envelope which is computed at every instant. The

dynamic reconfiguration was tested by changing the box size continuously and

observing the results in RVIZ. Figure 2 and Figure 3 shows the full point cloud and a

filtered version respectively.

Figure 2 Full Point Cloud from VLP16

Figure 3 Filtered Point Cloud

4. DJI Flight controller interface:

DJI provides an Onboard ROS SDK which was used to interface with the flight controller

via UART serial port. The UART_Can2 port on the DJI Matrice 100 was connected to

Linux machine via USB to TTL cable and a custom DJI cable.

Following steps were involved in this process:

1. Register as a developer with DJI, to generate a key and app ID which is later used for

application activation.

2. Configure the flight controller to enable onboard SDK API, set baud rate and

telemetry rates.

3. Clone the DJI onboard ROS SDK from GitHub and build.

4. Modify the ROS launch file for the DJI SDK with app settings and activate the key. For

the activation process, it is required to have a phone running DJI go app and

connected to the DJI flight controller.

5. Run the launch file and check the published telemetry topics.

So far, the initial interface to receive data from flight controller is complete. In the

coming weeks, this data will be processed to publish the tf tree, Odom and some other

flight-related information.

5. AR interface node

Before writing the AR interface node, the interface specification document was written

and revised so that there is no ambiguity. It was also identified that with ROS Java it is

difficult to subscribe to topics publishing custom messages. So, the whole interface has

been defined in a way to publish one float variable on one topic. The bird’s eye view

image is published as a standard camera/image type of sensor/msgs message in ROS.

The interface was tested with dummy data sent to AR interface and displayed in the

headset. The rate at which data was sent was varied between 50Hz to 1Hz to see if the

AR device can refresh data at that rate and what rate is good enough for the user to not

get distracted by fast changing numbers. It was observed that 10Hz is a decent enough

rate for the user and AR device was able to render it without any perceptible lag.

For communication, a wifi hotspot was created to which both the systems were

connected. There wasn’t any issue with data communication via ROS except the USB

wifi dongle on Jetson behaving erratically at times. We are procuring another wifi

adapter to fix this issue.

Challenges faced
• There was no documentation available to implement PCL Cropbox filter in ROS. It took

some time to that out from their library documentation.

Also, there is no specific documentation of how to dynamically configure the

parameters from the node and thus was a little challenging to implement.

• Getting wifi working on Jetson TK1 was a little bit of an issue. It should be a trivial thing

to do but since there’s no inbuilt support for wifi adapters, right drivers have to be

installed and configured to get it to work.

• Ground testing of systems in the cold 😊

Teamwork

Name Contribution

Nihar Tadichetty • Improving Heads-up-display in Epson AR headset,

by adding vertical scrolling numbers for altitude

and speed.

• Implemented communication protocol on ROS

Java.

• Identified libraries for Audio warnings.

Joao Fonseca Reis • Flight envelope computation based on quadcopter

dynamics. He developed a model which will be

used at every time instant to filter the point cloud.

• Developed an initial strategy to segment obstacles

into red (least time to impact), yellow(more time to

impact).

• Interfaced Google voice API for voice commands

and conducted tests to check feasibility for our

system.

Harikrishnan Suresh • Tested the limitations of the octomap library and

found that the update rate is slow for the purpose.

• Implemented Grid map library to develop a clean

version of the obstacle map. It’s still in

development phase.

• Tested the above mentioned two libraries with

NEA flight data sets.

Nicholas Crispie • Detailed design of Power distribution board,

developing BOM and Gerber files for PCB

fabrication

• Developed CAD model of the FVE hardware setup.

• Project management (work-packages,

procurement, schedule)

• Ground testing of DJI matrice to check sensors/GPS

Plans
Team Plans for PR4:

• HUD v1 refined and tested with live telemetry data from DJI matrice 100

• Dynamically updated obstacle map, tested on flight data sets, running on Jetson TK1

• Mapping node integrated into the onboard computer software

• Conduct ground tests with the aircraft mounted on cart to collect data from Velodyne

and DJI flight controller in an environment with dummy obstacles.

• Conversion of 2d obstacle map to fixed size bird’s eye view image.

• Audio warnings running on android device/emulator.

• Simple voice commands running on android device/emulator.

My tasks:

• Order wifi adapter for Jetson TK1 and get it to work.

• Publish tf tree and Odom for the mapping node

• Process the telemetry received from Flight controller and publish it for the AR interface

node.

• Write the interface for flight data sets and test flight envelope computation and cropbox

filter with NEA flight data sets.

• Conduct ground tests with the aircraft mounted on cart to collect data from Velodyne

and DJI flight controller in an environment with dummy obstacles.

• Run and test Hari’s mapping node on the Jetson with data collected.

• Generate a fixed-size bird’s eye view image from the 2d obstacle map.

