FlySense

Augmented Reality FPV assisted navigation (applied to a helicopter)

Design Review 29th January 2018

Shivang Baveja Nick Crispie Joao Fonseca Reis Harikrishnan Suresh Sai Nihar Tadichetty The final SVE system will have three major components: Aerial, Communications & User System

- DJI Matrice 100 (mounted with Jetson TX-2, Velodyne VLP16 Puck, PDB) and FPV Camera
- 5 GHz Dual Radio Base Station with MIMO technology
- Reality headset
- Headset for audio warnings & voice command recognition

Mandatory Functional and Performance Requirements

Feature	The system SHALL	Target Performance
Input	 Receive sensor state variable data (pose estimate, LIDAR input) 	 Receive Point cloud from 1 Velodyne VLP-16 Receive pose estimates from DJI M100
	 Receive Voice commands to toggle through FlySense widgets (Heads-up-display, Bird's eye view) 	 5 commands 90% recognition without noise 70% accuracy with noise
Process / Plan	 Detect obstacles in flight envelope 	 Projected 5 seconds into future 2m X 2m in distances less than 10m
	 Generate bird's eye view of obstacles surrounding the vehicle 	 Image generated in vehicle frame >=10Hz
	 Color obstacles in bird's eye view 	 Into Red, Yellow or Green based on time to impact, pilot's inputs
	 Override pilot commands to prevent collision 	• Stop the aerial system 1m before the obstacle
Output / Convey	Render HUD, horizon	 >10 Hz refresh rate
	• Render Bird's Eye View	 >10 Hz refresh rate
	• Generate Sound warnings	 Obstacle in flight path with least time to impact Binary audio, Left or Right based on obstacle Latency less than 1sec

Desired Functional and Performance Requirements

Feature	The system SHALL	Target Performance
Input	 Voice recognition personalized to User 	 Voice command personalized to 3 user
Process / Plan	 Override the pilot to avoid obstacles 	• Avoid obstacles by with radial clearance of 2m
Output /	FPV video overlay on EpsonSegment obstacles	 >10Hz frame rate Into 2 categories (Trees or building)
Convey	 Recommend feasible trajectory around obstacle 	 Avoid obstacle(s) by 1m Reduce errors by 20% w.r.t. pilot flying w/o FlySense

Updated Non-Functional and Performance Requirements

Segmentation	The system WILL	Target Performance
Installation	• Be easy to setup (hardware and software)	• The system will be set up within 1 minute with a single operator
Interaction with Pilot	 Feel natural to the pilot Be easy to put/remove headwear Be comfortable to wear headwear for long periods of time 	 Focal distance up to 20 meters Wearable like normal glasses Weights less than 1 pound
Information Displayed	Be clear and simpleBe non intrusive to the pilotBe non distracting for the pilot	• Focus group with 3 pilots using solution
Other criteria	• Be substantially more affordable than available solutions (e.g. fighter jet pilot helmets)	• Solution hardware cost below USD 5,000

Tentative

First we will attach a long tail to the quadcopter to simulate the behavior of a helicopter!

The maze test at NEA testing field will be done both with and without the FlySense system

Tentative

The maze test at NEA testing field will be done both with and without the FlySense system

The maze test at NEA testing field will be done both with and without the FlySense system

Tentative

Virtual Wall

The "virtual obstacle" test will be done in open field

- How best to mark the virtual wall in the real world?
- How best to monitor whether or not the red line is surpassed?

1

Quad flying at 5 meters altitude Pilot tries to crash into the virtual wall added in the LIDAR data

2

The objective of this feature is simply to prevent obvious disasters by stopping

Questions for you

- Does anyone have experience in overriding pilot inputs in DJI quadcopters?
- We have found a logarithmic controller that does this task efficiently (non PID), but are not sure how to treat the pilot input (smooth it?)

The objective of the flight envelope coloring is to alert the pilot of what he/she can do...

What we plan to do

- Area of interest selected based on dynamic window computed with vehicle dynamics
- Coloring based on <u>maximum possible pilot input</u> and vehicle dynamics
- Coloring based on <u>δ time for obstacle</u> to be inside the flight envelope [(x/a)²/+(y/b)²+(z/c)²<1]

Questions for you

- Is the concept "maximum" input the correct one (or should we restrain it to what the pilot is actually doing right now?)
- Will it be intuitive for the pilot to have a single obstacle with multiple colors?

... while the objective of the sound warnings is to alert the pilot of what he/she does not want to do

Time to impact	Time between beeps
4 to 5.5 seconds	0.5 seconds
2 to 4 seconds	0.3 seconds
0 to 2 seconds	0.1 seconds

Questions for you

- Do you agree with the concept that sound effects need <u>to be less intrusive</u> and thus depend on what the pilot is doing?
- Do we determine left/right based on current speed direction or based on a preferred direction (e.g. x)?

The objective is to improve recognition efficiency to 90% in noisy environments

What we plan to do:

1. Implement a deep neural network/ deep belief network to classify speech into 5 categories: Computer, Alpha, Bravo, Charlie, Close.

What questions we have?

- 1. Is it a good idea to build your own dataset of words?
- 2. Has anyone built a speech recognition system before?
- 3. Any challenges that we should be aware of?

Thank You!