Fly Sense

Team C – Test Plan

February 2018

Shivang Bhaveja Harikrishnan Suresh Nick Crispie Sai Nihar Tadichetty

Joao Fonseca Reis

Contents

1.	Introduction	. 2
2.	Logistics	. 2
3.	Schedule	.3
4.	Tests	.3

1. Introduction

This document describes the test plan that Team C will follow for the FlySense project during the spring 2018 semester. It includes the schedule of tests, the specific details of each test, and information about how the tests will ensure that the system meets design requirements.

For the Spring Validation Experiment (SVE), the team will present a fully functional system consisting of a flying quadcopter with the FlySense suite fully deployed on board and controlled from land using the User System, which consists of Augmented Reality Headset, our communications solution and the quadcopter radio controller.

During the Fall semester we developed the aerial and user sub-systems with the bird's eye view and the heads-up display functionality, along with a voice commands-based user interface. To fast track the process of testing, we designed a push-cart system which was used to validate some of the system requirements.

This semester our biggest challenge is to ensure all those systems are well-integrated with the flight system and tested thoroughly in flight. We also expanded our requirements to include a safety feature, which we are calling the "STOP" feature. The goal of this feature is to prevent the system from hitting any obstacle.

To ensure that we develop a robust system which meets our design requirements, we have organized the tests based on architectural hierarchy. The tests range from component level tests (newer or revised components) to sub-system tests (either previously tested on the ground or with a new component added) and finally the full-functionality system tests.

2. Logistics

All testing activity at component and sub-system level will be handled by the team members. Testing personnel will change across tests as described in the relevant sections.

3. Schedule

The following tentative schedule will guide all our testing activity this semester, from component level, to sub-system to full system testing and SVE.

Test ID	Architecture	Test name	Date
T01	Sub-system	Quad Flights with Weights	2/10
T02	Component	Power Module Test	2/12
T03	Component	Communications Test	2/10
T04	Sub-system	Log flight data to tune flight dynamics	2/13
T05	Sub-system	Flight with Velodyne and Jetson onboard	2/20
T06	Component	Test FPV Camera	2/14
T07	Sub-system	Flight with Velodyne, Jetson and FPV camera	2/28
T08	Sub-system	Flight to Evaluate Birds Eye View, sound warnings	3/7
T09	Sub-system	Flight to evaluate "Stop" functionality	3/21
T10	Sub-system	Flight with new video feed merging FPV and user	3/14
		widgets	
T11	System	SVE Dry run 1 (NREC)	4/4
T12	System	SVE Dry Run 2 (Nardo)	4/11
T13	System	SVE	4/25

4. Tests

T01: Quad Flights with Weights

Item	Description
Objective	 Check flight stability with maximum payload weight
Elements	Flight hardware
Location	Schenley Park
Equipment	DJI Matrice 100
	 DJI Matrice Remote Control Joysticks
	Weights
Personnel	Nick Crispie, Shivang Baveja
Procedure	1. Attach weights securely to quad
	2. Weigh entire weighted quad, verify it is 3.6kg
	3. Hover for 5 minutes at constant position and observe vertical oscillations
	4. Fly back and forth in 30m straight lines. Start slow (1m/s) and progress faster (up to 5 m/s). Observe stability.
	5. Record flight time and battery drain
	6. Add additional weights above 3.6kg as deemed acceptable (target 200g)

	7. Repeat steps 3 through 6
Verification criteria	 Determine estimated flight time at given weight
	 Determine maximum reasonable weight to fly the quad (within safety factor and expectation of full hardware system)

T02: Power Module Test

Item	Description
Objective	 Validate all flight hardware will be adequately powered
Elements	Flight Hardware
Location	MRSD Lab-NSH B506
Equipment	Volt Meter
	DC voltage supply
	 DJI Matrice 100 with battery
Personnel	Nick Crispie
Procedure	1. Attach power module to DC power supply at 25V. Check
	power output (current and voltage)
	2. Attach DC motor to power module, run for 10 minutes
	3. Attach power module to DJI M100 power outlet, run
	motor for 10 minutes
	4. With power module attached to DJI M100, attach Jetson
	power cable. Run Jetson
	5. With power module attached to DJI M100, attach Jetson
	and Velodyne VLP16 power cables.
Verification criteria	 Power module must output be 12V +5V
	• Power module must be sufficient to run small DC motor
	without overheating
	Power module must be sufficient to run both Jetson and
	Velodyne without issue

T03: Communications Test

Item	Description
Objective	• To test the Ubiquiti AC-M access point as a ground WiFi unit to
	which the aerial system and the user system will be connected
Elements	Range on 5Ghz
	 Range on 2.4Ghz-interference with DJI
	 Range with Omni-directional stock antennas
	 Range with high gain directional patch antenna
Location	Schenley Park

Equipment	• Jetson TX-2 mounted on quad-copter (only to get power from the
	quadcopter power-rail), Ubiquiti AC-M access point with 2 sets of
	antennas (powered via external battery), Laptop
Personnel	Shivang, Nick, Nihar
Procedure	Setup:
	 Move to an open, flat area in Schenley Park
	 Ensure omni-directional antennas connected to the Wi-Fi access point.
	 Power up all the systems
	 Ensure laptop, Jetson and Epson are all connected to the access point.
	 Broadcast video and telemetry data from Jetson, check that we can receive on Epson and Laptop
	Test1: Benchmark with omni-directional antennas
	access point.
	 Observe data stream at laptop and Epson.
	• The person with the quadcopter will keep walking away until
	connection is lost or 100m is reached.
	Return when any of the two conditions are met
	• Testers on the ground station will record the range and quality degradation seen with increasing distance.
	Test2:
	 Switch to directional antennas
	 Ensure that all the units are connected to the access point.
	 1 person will pick up quadcopter & move away from the Wi-Fi access point.
	 Observe data stream at laptop and Epson.
	• The person with the quadcopter will keep walking away until connection is lost or 100m is reached.
	Return when any of the two conditions are met
	• Testers on the ground station will record the range and quality
	degradation seen with increasing distance.
	Power off all systems
Success	Range should be greater than 30m when using omni directional
Criteria	antennas.
	Range should be greater than 60m when using Directional antenna.

Data stream at Laptop should be robust and without lag till 60m
 Data stream at Epson should be robust and without lag till 60m

T04: Log flight data to tune flight dynamics

Item	Description
Objective	Gather odometry and pilot inputs on different flight modes
	in order to understand the impact of quad parameters on
	its dynamics (mass/weight, drag, speed cut-off limit)
Elements	 Sensors, Flight unit
Location	Schenley Park
Equipment	 DJI M100 Flight system
	Velodyne VLP 16 Lidar
	Nvidia Jetson TX2
Personnel	 Nick, Shivang, Joao
Procedure	 Set maximum cut-off speed to 2 m/s
	 Fly the quad to at least a 5-meter altitude for safety
(Test A: Straight	 Fly quadcopter full throttle forward
line)	 Wait for quadcopter speed to stabilize at max cut-off
	 Stop all inputs and let the quadcopter stop by itself
	 Repeat several times gradually increasing cut-off speed
Procedure	 Set cut-off speed to 2 m/s
	 Fly the quad to at least a 5-meter altitude for safety
(Test B: Curved	 Fly the quadcopter until it reaches the max cut-off speed
line)	 Introduce maximum input possible to the right
	 Keep input constant until the quadcopter performs a curve
	 Repeat procedure to the left side
	 Stop all inputs and let the quadcopter stop by itself
	 Repeat several times gradually increasing cut-off speed
Verification	 Odometry logged successfully with correct time stamping
criteria	 Pilot inputs logged successfully with correct time stamping

T05: Flight with Velodyne and Jetson

Item	Description	
Objective	 Check stability of aircraft with full system onboard 	
	 To collect data from Velodyne and DJI quadcopter in flight. 	
	 To test communication to the quad over 5Ghz wifi. 	
Elements	 Sensors, flight system and communication 	
Location	Schenley Park/CMU	
Equipment	 DJI M100 Flight System, DJI Flight controller, iPhone 	

	Velodyne VLP16
	• Jetson TX-2
	 Ubiquiti AC-M WiFi access point
	Laptop
Personnel	Shivang, Nick, Hari
Procedure	Flight 1:
	 Takeoff, hover for 3 min and land.
	 Conduct physical checks to ensure all onboard systems are still
	fine.
	Flight 2: System stability, communication test
	• Takeoff, climb to 5m, roll, pitch and yaw to check lateral and
	longitudinal stability, land.
	 Check live stream of data on laptop
	 Let system hover until battery reaches 30% mark, then land.
	 Download and check the recorded data
	Elight3: Point cloud and flight data collection test
	 Takeoff, climb to 5m, hover for 1 min, move in an area of 20m x
	20m
	 Move near tree, wall maintaining at-least 5m from them.
	 Climb to 10m, move the quad in the same area
	• Land
Verification	Flight related:
criteria	 Stable flight with Velodyne, Jetson onboard
	 Velodyne and Jetson fully functional after landing
	Functionality related:
	 Point cloud data and Quadcopter flight data logged
	 reliable and continuous communication all throughout the
	flights

T06: Test FPV Camera

Item	Description	
Objective	 Check video streaming quality of the on-board camera 	
Elements	Camera stream	
	 Display video stream on Epson BT 300 	
	 Processing on the Jetson TX2 	
Location	Schenley Park/CMU	

Equipment	Epson BT 300
	Jetson TX2
	ELP USB camera
Personnel	Nihar, Hari
Procedure	 Connect the ELP USB camera to the Jetson TX2 and power up
	the device
	 Start the ROS nodes to stream data on a topic
	 Setup the Epson augmented reality headset and open the
	FlySense application
	 Home screen will display the FPV video stream
Verification	 ROS nodes connect without major issues
criteria	Video stream is discernible
	 Video stream is smooth without lag

T07: Flight with Velodyne, Jetson and FPV camera

Item	Description
Objective	 Check stability of aircraft with full system onboard
	 To collect data from Velodyne Lidar
	 To test communication to the quad over 5Ghz Wi-Fi.
Elements	 Velodyne 3D point cloud stream
	Camera stream
	Wireless Connectivity
	Quadcopter Flight
	Ground station monitoring
Location	Schenley Park/CMU
Equipment	Jetson TX2
	ELP USB camera
	DJI Matrice 100
	Velodyne Puck
Personnel	 Nihar, Shivang, Nick
Procedure	 Setup the quad in the flying zone
	Secure perimeter
	 Fly the quad in auto take off mode
	 See for instability, altitude variation and drifts
	 Check for wireless connectivity between the quad & computer
	 Check Velodyne Lidar stream/logs
	 Check video stream on computer
	 Land quad in auto landing mode
Verification	Quad takes off without any glitches

criteria	 No major instability while stationary in air
	 Wireless connection is seamless
	Lidar stream is as expected
	 Video streaming is smooth
	 Quad lands without any glitches

T08: Flight to Evaluate Birds Eye View, sound warnings

Item	Description
Objective	To evaluate the color coding algorithm for the point clouds
	• To understand the reception and display rate of the point clouds on
	the AR interface
	• To evaluate the algorithm for sound warnings in 3D and also
	understand the user experience
Elements	• AR interface, Sensors, Communication system, Backend algorithms
Location	Schenley Park/NREC
Equipment	DJI M100 Flight System, DJI Flight controller, iPhone
	Velodyne VLP16
	Jetson TX-2
	Ubiquiti AC-M WiFi access point
	Laptop
	Epson BT-300, earphones
Personnel	Full team
Procedure	Flight 1: Trial flight to check data reception
	• Take off, climb to 5m altitude & move within an area of 10m x 10m
	Check reception of colored point clouds on AR interface
	Flight 2: Check Birds Eye View in pre-determined environment
	Take off and climb to 5m altitude
	• Fly pass by tree (note: clearance will be artificially big so that the
	system identifies it as a collision)
	• Check the transition of color in the point cloud of this tree alone in
	the AR interface
	• Print expected time to impact in the terminal of the ground system
	computer and note the transitions based on the pilot's observation
	Elight 2: Check cound wornings in pro-determined environment
	 Take off and climb to 5m altitude
	 Nove between rows of trees (appearing both left and right at least
	• wide between rows of trees (appearing both left and right at least
	twice) at 2m/s maintaining 5m clearance

	 Print time to impact, frequency of beeps and the location (L/R) on the terminal of the ground system computer Listen to the audio warnings on the Android phone and the AR interface Fly to open space after the last tree and hover
Vorification	 Data recontion is real time with minimum latency.
criteria	• Color of the point clouds representing the target change from green
	to red to yellow based on the limits we estimated
	• Sound warnings appear in the correct ear (multiple times in both left
	and right sides)
	• Sound warnings become more prominent as vehicle flies closer and
	fades as it moves away

T09: Flight to evaluate "Stop" functionality

Item	Description
Objective	• Evaluate if the stop functionality correctly blocks inputs
	that would make the quad "crash in a virtual wall"
Elements	 Sensors, Flight unit, "Stop" functionality
Location	Schenley Park
Equipment	 Quadcopter, Velodyne, Jetson
Personnel	 Nick, Shivang, Joao
Procedure	 Set the quad maximum cut-off speed to 2 m/s
	 Fly the quad to at least a 5-meter altitude for safety
	 Introduce a virtual wall in the LIDAR data
	 Move the quadcopter away from the virtual wall
	• Ensure enough clearance so that the quad can reach
	maximum cut off speed
	 Fly the quad copter directly to the wall at 90^o angle
	 Repeat procedure with different approach angle
	 Repeat procedure gradually increasing cut-off speed
Verification criteria	 Movements towards the wall are gradually constrained
	 All movements <u>away</u> from the wall were not constrained
	 Process is smooth with minimum jerks
	 Process is independent of speed (provided there is an
	actual solution for the starting conditions)

T10: Flight with new video feed merging FVP and widgets

Item	Description
Objective	• Test if the new video feed merging the FVP and widgets
	in a single screen can be rendered onboard the
	quadcopter real time
Elements	 Sensors, Flight unit, AR unit, Communications
Location	Schenley Park
Equipment	 Quadcopter, Velodyne, Jetson, Camera, Radio
Personnel	 Nihar, Nick, Shivang
Procedure	 Set the quad maximum speed to 2 m/s
	 Fly the quad to at least a 5-meter altitude for safety
	 Turn on the FVP view feed in the Epson
	• Fly the quadcopter for several minutes at around 10
	meters distance from the pilot
	 Gradually increase the range & monitor the image quality
	 Repeat the procedure gradually increasing cut-off speed
Verification criteria	 Measure delay/latency and image degradation
	 Image can be rendered with quality onboard
	 Image can be received with quality on land
	 Image can be presented with quality on the Epson

T11: SVE Dry run 1 (NREC)

Item	Description
Objective	 Test all the subsystems together as one unit in mission environment Understand the user experience for every mode, and the complete interface Gather internal feedback about the user system, and understand the scope for improvement
Elements	Complete system
Location	NREC
Equipment	 DJI M100 Flight System, DJI Flight controller, iPhone Velodyne VLP16 Jetson TX-2 Ubiquiti AC-M WiFi access point Laptop Epson BT-300, earphones
Personnel	Full team
Procedure	Test 1

	• Set up an environment with few obstacles and opportunity
	to navigate just like a maze
	• Predefine a path that involves moving up to 5m of one
	obstacle, and maneuvering around it
	 Extend the path to contain 3 more obstacles to the goal
	 Take off and climb to 5m altitude
	• Fly quadcopter along the predefined path using FPV and
	Bird's Eye View
	 Hover and land after reaching the goal
	Gather feedback from pilot to check for improvements
Verification criteria	Data reception on the AR interface is real time
	• Birds Eye View images are clear, and obstacles are
	distinguishable
	 Point clouds show the expected transition of colors
	• Sound warnings appear only when needed and are not
	intrusive to some extent
	 Dilot cafely guides the vehicle to the goal and lands
	 Filot safety guides the vehicle to the goal and lands

T12: SVE Dry Run 2 (Nardo)

Item	Description
Objective	• Test all the subsystems together as one unit in SVE test
	environment
	• Understand the pilot experience for every mode, and the
	complete interface
	• Gather all the necessary feedback to improve the system
	before SVE
Elements	Complete system
Location	Nardo Airport
Equipment	DJI M100 Flight System, DJI Flight controller, iPhone
	Velodyne VLP16
	Jetson TX-2
	Ubiquiti AC-M Wi-Fi access point
	Laptop
	Epson BT-300, earphones
Personnel	Full team
	David Murphy (NEA)
Procedure	Test 1
	1. Set up Environment according to Figure 1
	2. Fly quadcopter along the predetermined route without
	the Bird's eye view aid or sound warnings (only FPV).
	3. Fly quadcopter along the same route with the Bird's eye
	view and sound warnings
	4. Fly 2nd time without sound warnings
	5. Gather feedback from pilot about the scope for
	improvements in the system and the test
	Test 2
	1. Fly in an open field towards virtual obstacle at constant
	speed (~3 m/s)
	2. Give consistent control even as guadcopter comes to
	complete stop
	3. Fly quadcopter parallel to the virtual obstacle
	4. Gather feedback from pilot about the scope for
	improvements in the system and the test
Verification criteria	Pilot completes assisted trial in less time and fewer close
	encounters with obstacles.
	• Point clouds are colored correctly, and pilot is able to
	infer the required information easily
	Sounds warnings convey current information without
	irritating the pilot

• The controller Overrides pilot commands within 1 m of
obstacle contact
• Pilot gives positive feedback about the assistive tech
with very few suggestions to improve upon

T13: SVE

Item	Description
Objective	Verify System Level Requirements
	 Demo full system to Project stakeholders
Elements	Full System Test
Location	Nardo Airport
Equipment	 DJI Matrice 100 with FlySense Hardware
	 Epson BT300 AR Headset
	Various cardboard obstacles
Personnel	Full team
	David Murphy (NEA Pilot)
Procedure	Test 1
	 Set up Environment according to Figure 1
	2. Pilot will fly quadcopter along route without the Bird's eye view
	aid or sound warnings (only FPV).
	3. Pilot will fly quadcopter along specified route with the Bird's eye
	view and sound warnings
	4. Pilot will fly 2nd time without sound warnings
	Test 2
	5. Pilot flies in an open field towards virtual obstacle at constant
	speed (~3 m/s)
	6. Pilot gives consistent control as quadcopter comes to complete
	stop
	7. Pilot manually flies quadcopter parallel to the virtual obstacle
Verification	• Pilot completes assisted trial in less time and fewer close
criteria	encounters with obstacles.
	• Bird's eye view is properly segmented with green, yellow, and
	red
	 Sounds warnings convey current information within .2 seconds
	 Detects all obstacles of size 2m x 2m or larger at 10m distance
	 Overrides pilot commands within 1 m of obstacle contact