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Work done these past 2 weeks 
 
Over the past two weeks we have 
 

a) Done multiple flights (dynamics calibration with different weigths, FVP video testin) 
b) Re-written the code for the sound warnings (to be the input for the obstacle avoidance) 
c) Integrated the code for coloring obstacles (parameters being fine-tuned) 
d) Written the code for obstacle avoidance in Matlab (push done over the spring break). 

 
Our hardware setup is final apart from the pending tail (which we are still debating internally 
whether to do a virtual or a real tail). The trade-off is between safety and “making it as real and 
tangible as possible”.  
 
The final component was the FPV video that was successfully deployed last weekend. 
 
 

 
 
Our next big milestone is the second NEA pilot workshop this coming Friday where we will be 
showing a few mock-ups and “finalizing the art-work”/setup parameters on what to deploy.  
 
We got a lot of feedback in the first workshop, but we need to show a few options so that we close 
the design and start making the final programming: 
 



 
 
 
Individual achievements for the past 2 weeks 
 
During the spring break I dedicated myself to write/review all the Matlab code of the algorithms 
being the project:  

 Dynamic window (what is the region shown to the pilot) 
 Circle of doom (what is really dangerous from what you see around) 
 Coloring of the region shown to the pilot (what is the danger level of the different obstacles 

based on what the current state and what the pilot can do next) 
 Sound warnings (and how to highlight to the pilot which point is causing the beeps based 

on pilot input) 
 Obstacle avoidance (pilot control override working as an emergency brake when collisions 

are eminent) 
 
I also worked with Hari on the deployment of the Sound and Coloring code in the Jetson, but we 
could not finish everything as we got held back by unforeseen factors. First the coloring code that 
worked in our laptops did not work in the Jetson (there was an overflow in one of the intermediate 
steps that did not overflow when the code run in the laptops) and Hari ended up having to reformat 
his computer as its performance was degrading ever more. 
 
Control Algorithm used 
 
Assuming a linear system, the position on a specific dimension is given by (x_i is the i 
coordinate of a three-dimension position state vector): 

 

x_i[t_]: = 𝑡 ∗ veqX_i −
𝑒

_ ∗
𝑚(v0x_ − veqX_i)

Ax_i
+
𝑚(−veqX_i + v0x_i)

Ax_i
+ x0_i; 



The formulas are the same for all axis, but the equilibrium speeds are different.  
 In z gravity plays a role with the zero-input mapped to a non-zero vertical thrust so that 

the pilot does not have to worry about keeping altitude constant.  
 In xy the z Euler angle defines rotations that transpose the body frame inputs (left/right or 

forward/backwards) into the real world. 
 The drag coefficients are substantially different across the XY (we assume the attrition is 

the same for the x and y axis which is approximately true) and z axis (much more drag) 
 
 
The speed is given by: 
 

vx_i[t_]: = (−veqX_i + v0x_i)𝑒
_

+ veqX_i; 
 
 
For obstacle avoidance we can easily determine the time for impact from zeroing the speed 
equation and introducing this time in the position equation: 
 

∆X_i ==
𝑚v0X_i

AX_i
+
𝑚(veqX_i ∗ Log[1 −

v0X_i
veqX_i

])

AX_i
∗ veqX_i veqX_i⁄  

 
This equation can be solved for the equilibrium speed that a pilot input should give, that given a 
non-zero initial speed at a particular point, would stop at the obstacle location. Nonetheless, the 
equation is transcendent (product log) and Matlab/Mathematica are really bad using it (C++ is 
bound to be even worst). 
 
Instead of doing this, we solve for two types of situations that are really simple: the “No Return” 
range (what is the distance the quad travels starting from a non-zero speed and having full reverse 
input) and the “Zero Input” range (the distance the quad travels with a zero input when starting 
from a non-zero initial speed).  
 
We then fit a straight line between the two limit cases, simplifying the inverse dynamics and getting 
a control that reacts faster then the original function and should be more stable than a non-linear 
control with a function whose numerical computation is problematic. As a bonus, the straight line 
can be extended beyond the “Zero Input” as we no longer have a domain problem as we did in 
the “Product Log”. The point where we can give maximum input in the direction of the obstacle 
and still stop on time is referred to as “Full Control”: 
 
Example: 

Y is the computed range (output in m) 
X is the equilibrium speed (input in m/s) 
 
Blue is the “real” product log function 
 
Red is the simplified control (please note that his is not 
a classic linearization about a single point, is a 
simplification that fits across two different 
points/regimes) 
 

Note: this data uses the calibration from the flight with 2.9 kg total payload. 
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The result is that we will be able to operate seamlessly in four different regimes: 
 Type I: The quad is in a state where the obstacle is further away from the “Full Control” 

and the pilot can do whatever he pleases 
 Type II: the quad is in a state where the obstacle is further than the “Zero Input” range 

and the algorithm operates in the region of positive thrust inputs (which is a one to mapping 
to a target steady state speed) that tend gradually to zero as the obstacle approaches 

 Type III: the quad is in state further away from the “No return range and the algorithms 
operates in the region of negative thrust inputs that tend gradually to zero as the object 
approaches 

 Type IV: the quad is in a state closer than the “No return” range and only accepts inputs 
of “full reverse” 

 
The discussion above is for the direction(s) constrained by the existence of obstacles. In 
directions where there are no obstacles the pilot is by default in “Type 1” regime.  
 
 
Obstacle avoidance test cases 
 
Below are some of the test cases ran on the Matlab code used for obstacle avoidance. 
 

 We started with a very simple case with the vessel steading still, then initiating a 1D 
movement towards a stationary obstacle situated 25 meters away. 

o The first graph shows the “Full Control” range, the “Zero Input” range and the “No 
Return” range  

o The second graphic shows the actual speed and the target speed (this has a one 
to one mapping to the thrust inputs and corresponds to a steady state) 

o The third graphic shows the actual speed vs the distance to the obstacle (please 
note that the algorithm first allows full acceleration before constraining the pilot) 

o The last graphic shows the target speed vs the distance to the obstacle (please 
notice that all inputs are on the “positive” thrust side 

 

 



Cases where the quad starts with non-zero initial speed (1D) 
 

 Below the case where the algorithm could not prevent the collision (e.g. a moving obstacle 
that just crossed the path). It needed minimum 10.4 meters to stop but only had 8 meters 
available before crashing. 

 

 
 
 

 Below the intermediate case where only negative thrust inputs can be issued 
 

 
 



 The case where the quad can prevent collision with positive thrust inputs 
 

 
 
Note: on the code implementation in the quad we define a minimum clearance distance. This will 
be the distance, measured from the obstacle, where the quad will stop. 
 
 

 The case where the quad can do any input for the first leg of the flight and gets gradually 
constrained as it approaches the obstacle 

 

 



We then initiated tests on 2D 
 

 Flight is initiated with a speed in X and the pilot gives a continuous input in Y in the direction 
of the obstacles. The algorithm successfully sopped the quad 1 meter before the obstacle 
(clearance distance defined in the simulation). 

 

 
 
 

 Same as the previous case, but at 5.6 seconds the pilot changes its mind and introduces 
a continuous input in the Y direction away from the obstacle 

 

 



 Same as the first 2D case, but the pilot input is changed at 5.6 seconds to an input in the 
X axis 

 

 
 
The last set of tests were done in 3D 
 

 Pilot input is done continuously in the direction of the obstacle 
 

 



 Same as the previous 3D case, but the pilot input at 12 seconds is changed to a side input 
AND continues to introduce an input in the direction of the obstacle 

 

 
 
This was the most difficult case as we found that in the first implementation we had done, once a 
direction was “forbidden” all subsequent pilot inputs in that direction were ignored. The algorithm 
was not forgetting the obstacle. 
 
 
Milestones for next two weeks: 
 
For the next PR I plan to have: 
 

a) Prepare the NEA pilot workshop with the rest of the team 
b) Work with Hari and Shivang in deploying/optimizing/reviewing all the code 

 
 
Problems Faced these past weeks: 
 
The biggest problem is, as always, a substantial load from all the different courses… made worst 
by the fact that this semester there is not only one group to interact with across three different 
courses, but rather a different group for each course. 
 
 
Key risks: 
 
Navigating through the heavy load coming from multiple assignments across all courses. I am 
beginning to regret the day I convinced professor Dolan to have 5 technical courses in a single 
semester (I had an MBA which made the business classes kind of redundant). 


