

Harikrishnan Suresh

Team C: Fly Sense
Teammates: Shivang Baveja, Nicholas Crispie, Joao Fonseca, Sai Nihar

Tadichetty
ILR08

March 1, 2018

Individual Progress

I have been working on porting Joao’s point cloud coloring and sound warning
algorithms to C++ and ROS. After a few productive discussions on the algorithms, it
was decided to implement and test them first before fine tuning it for our
application. The first version of the ROS C++ code has been written. The aim now is
to feed dummy data in the form of ROS point cloud sensor messages and compare
the results with the MATLAB results. The code has to be optimized to improve
performance and robustness so that it can be deployed real time on the actual
quadcopter system. Once this is complete, the code will be integrated with the
flysense software stack.

In order to ensure minimum pre-flight wait time, we have decided to launch the
code on power-up of the Jetson. I looked into the ‘robot upstart’ package which
sets up a ‘config’ file to run on power up. The main flysense onboard launch file
was successfully linked to the package and tested on my laptop. The challenge now
is to set up the Wi fi connection between the Epson and the Jetson, by specifying
the IP address and setting up the ROS master.

The first flight test with the Velodyne onboard was completed, and live point cloud
data was streamed from the Jetson. The point cloud data and the Bird’s eye view
image was visualized in Rviz. The point cloud data along with state data from the
DJI was recorded to a bag file, so that I can be used to test the algorithms offline.

Velodyne

DJI Matrice
100

We also had our first pilot workshop at Near Earth Autonomy. The main objectives
were to gather feedback about the final HUD user interface on the Epson along
with the key elements projected and the SVE tests. The major takeaways from the
pilot workshop are:

1. The major elements in the HUD are speed and altitude, yaw is optional.
2. Birds Eye View (BV) –

o It is important to clearly communicate what the heading direction is,
using a triangle or arrow.

o The size and position of the BV should be customizable, if possible
o One of the ellipsoids used as thresholds for coloring must be explicitly

represented using a light ghost ring to be used as reference for the
pilot

o The obstacles in red should be blinking to convey the urgency, and the
blinking frequency must be aligned with the beeps in sound warnings

3. Sound warnings
o It is more convenient for the pilot to have flat sound if the special 3D

sound is not possible. Having stereo left/right sound warnings does
not add lot of impact because of the numerous orientations possible
for a helicopter

o Preferred warnings setup – One single long beep for the first level, two
beeps of shorter duration repeating with a slight delay for the second
level and high frequency beeps for the high level of danger

4. The pilot must be informed that his control has been over ridden, by
indicating some message on the HUD

5. The tests have to be redesigned as the pilots are not comfortable moving
between containers. The final test scenario will be discussed and confirmed
soon.

Challenges faced

1. Since majority of my work this semester has been in collaboration with other
teammates, the varying course schedule and associated commitments have
made it difficult to find free time to work together.

2. The plan was to do multiple tests with the Velodyne onboard. However, due
to some hardware issues, we had to stop after the first test.

3. While setting up the Jetson TX-2 software, CUDA 9 was installed on my
laptop. CUDA 9 reattaches the OpenCV bindings from the normal source to

itself. This uninstalled the ROS OpenCV interface, and the FVE code stopped
working on my laptop. I spent a whole day trying to solve this, and finally
succeeded. I had to uninstall CUDA 9.0, install OpenCV 3 over OpenCV 2 and
enable ROS support for openCV 3. I had to also install additional support
packages in ROS for OpenCV 3 support.

Team work

Team Member Contribution
Shivang Baveja • Conducted flight tests with the

complete system onboard.
• Completed the first version of the

pilot control override code. The next
step is to test the algorithm in
simulation.

Nick Crispie • Completed all the major hardware
tasks including Velodyne cable
modification, quadcopter wiring
and power module.

• Assisted in all the flight tests
Joao Fonseca • Implemented and tested the

algorithm to color obstacle point
clouds and sound warnings in
MATLAB

• Completed calibration of the
quadcopter model based on the
flight data

Nihar Tadichetty • Setting up the environment for
image segmentation, sorting all the
compatibility issues between
OpenCV and CUDA 9

• Setup code to read FPV camera
videos. Next step is to project the
FPV video on the Epson.

Tasks

Team goals

• Complete the hardware setup and make it more robust.
• Conduct more flight tests to collect data and improve the algorithms. Test

FPV video during the flight tests.
• Test the pilot control override code in simulation

My goals

• Complete the obstacle coloring and sound warnings code in ROS and test it
with the MATLAB output

• Optimize the code to ensure real time performance
• Integrate the code with the flysense software stack

