
Personal Progress
The past two weeks I spend most of my time working on a Gazebo simulation that is meant to
(eventually) demonstrate and test the full system on the bench. I also did work to debug the
obstacle avoidance code and worked on flight testing.

The Gazebo Simulation so far has two major parts to it: the Velodyne VLP-16 LIDAR model and
the DJI M100 flying around. I started out with some old sample code that other people had
created to model the LIDAR and DJI separately, which I needed to modify and combine in order
to use for our purposes. The original code repositories are listed below for reference:

● https://github.com/caochao39/hku_m100_gazebo​ - This is the original Gazebo model for
the DJI M100 drone, as well as some base code for getting the model to move around
when subscribed to the correct topics from the DJI PC Simulator.

● https://bitbucket.org/DataspeedInc/velodyne_simulator/src/01bfb68ef647/​ - This is the
original code for creating the VLP-16 LIDAR model and getting data from.

One major challenge was getting all the code to build in the first place. You may recall that in
my last IRL, I listed getting the code to work was one of the challenges I face, and in the
absence of knowing what to do, and with limited experience in Gazebo, I decided to proceed
with building my own LIDAR model to both make some forward progress as well as learn more
about how the environment worked. This time around, I decided to take another stab at working
with the base code, since making modifications to something that already somewhat works was
in the long term going to be easier. I discovered that with respect to the LIDAR code, one issue
was with the Gazebo math packages. Once I installed the correct packages and made some
small modifications to some of the data structures in the code, I was able to successfully get a

https://github.com/caochao39/hku_m100_gazebo
https://bitbucket.org/DataspeedInc/velodyne_simulator/src/01bfb68ef647/

point cloud to display in rViz when I placed custom obstacles at various locations in the Gazebo
environment. A picture of that test is shown in Figure 1.

With the LIDAR data coming through, I proceeded to get the DJI code working, Again I
encountered challenges getting the code to build. This I discovered was a case of the code
being old. The DJI SDK was since updated to include normal geometry_msgs data types
instead of DJI specific data types. With those modifications in place, as well as adjusting the
topic names for the correct data from a bag file instead of from the DJI simulator, I was able to
get the code to build and run properly. I tested this by running a bag file from a previous flight
on Flagstaff Hill and observing the resulting motion of the quadcopter in the Gazebo simulator.

Next up was integrating the two. Here I combined the urdf files and consolidated the correct
commands into a single launch file in order to get the LIDAR data coming through at the same
time as the quad flying around. I again tested this with a bag file from a flight in Schenley Park.
This worked to an extent-I was clearly able to see the point cloud updating, but the data in rViz
would flash intermittently. I discovered this was because the rViz time kept switching back and
forth in between the ROS time from the recorded bag file and the clock time from the Gazebo
simulator. This caused problems because the TF buffer was constantly cleared every time this
happened, resulting in the point cloud data disappearing in rViz since the pose transformation
was no longer available.

Beyond this, I also contributed to the debugging process for implementing the obstacle
avoidance code in the DJI simulator. We were having some initial problems getting it to work, I
helped Shivnag and Joao look over the code and test for a solution. One of the main problems
turned out to be a reference frame problem, though we still have work to do in order to make the
avoidance/emergency brake functionality smoother and more intuitive.

We also had a major flight in which we tested the integrated system on Thursday the 5th (right
after the PR, when the weather finally cooperated). Shivang, Hari and I went out to Flagstaff Hill
and flew the quad with the Epson to test the integration of the Bird’s Eye View and FPV in a live
environment.

Challenges Faced
One challenge we faced as a team that directly impacted my work was the weather throwing a
wrench into the testing schedule. We have had a lot of rain recently (and even snow), so it’s
been hard to schedule tests.

For me personally, I had a lot of trouble getting the base Gazebo simulator working, and had to
fight through a lot of small issues while learning how Gazebo works. I finally did get it working,
and I’m planning on making my code (and documentation) publicly available so other MRSD
teams in the future can benefit from my experience.

Teamwork

Teamwork
Joao: ​Joao worked on integrating the sounds warnings with Hari and worked on integrating the
obstacle avoidance with Shivang.

Shivang: ​Shivang worked implementing Joao’s Matlab code into C++ code for the obstacle
avoidance, as well as cleaning up the visuals of the coloring and Bird’s Eye View.

Hari: ​Hari worked on integrating the sound warning code into our stack, as well as
improvements to the Bird’s Eye View.

Nihar: ​Nihar has been working on refining the user interface and improving the FPV camera
view based on the input we received from David Murphy at the last pilot workshop (last week).

Future Plans
The team is scheduled to do a dry run/integration test with NEA at Nardo on Friday (weather
permitting, next week as a backup). We will continue to make modifications to the user interface
as we refine the integration and do more extensive testing.
My primary work is centered around getting the simulation ready. I have to finish integrating
with the DJI simulator (we didn’t end up having time to test this before the last PR), as well as
integrate a FPV camera onto the quad. We will then be able to test our code on the simulated
environment. This is what we are hoping to show for the SVE dry run at the next PR as well as
our demo for National Robotics Week.

