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Abstract 

 
This document extensive details of the project undertaken by MRSD 2018 Team C under MRSD               
Project course. MRSD Project course is a core element of the MRSD program at Carnegie               
Mellon University, and allows students to work in teams towards a common goal of developing a                
robotic system which can be used in an identified problem scenario. This document summarizes              
the activities carried out by Team C – FlySense from August 2017 to May 2018 to develop their                  
Augmented Reality based assistive technology for aiding aerial navigation. 
 
The report begins with a basic description of the project, highlighting the need for the assistive                
system, followed by a use case that clearly depicts how the system will be used. A list of system                   
level requirements, both performance and non-functional are presented. The approach is           
graphically depicted in functional and cyber physical architecture. The key component selection            
is motivated by system level trade studies.  

A detailed description of the system is then provided including sub-system design, modelling,             
testing and overall system evaluation during Spring Validation Experiment (SVE) and SVE            
Encore. Further, project management section provides details about schedule, budget and risk            
management. The report concludes with lessons learned, future work and references.  
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1. Project Description 
Helicopter pilots have one of the toughest jobs in the world. Their jobs are usually task and                 
sensory saturated, with limited ability to process new information and many different controls to              
be used in an instant. However, there aren’t many aids for helicopter pilots that present useful                
information in a relevant way. The U.S. military has invested millions of dollars in              
state-of-the-art headsets for conveying all sorts of information to fighter pilots in real-time, but              
nothing close to that technology has been introduced in the commercial domain given the current               
price point and the focus on assisting firing and targeting systems. 

Helicopter pilots face difficulties in different phases of flight and mission types. Some of these               
are low-altitude flights, landing in tight spaces with fixed structures and navigation in             
low-visibility scenarios. Out of the listed flight stages, one of the most critical is a flight at an                  
altitude below 200ft AGL (Above Ground Level) where, unlike commercial airplanes, there are             
no autonomous piloting features in place to aid with the landing. Helicopter pilots resort to their                
instruments, but above all look for visual landmarks to understand their environment and judge              
how far they are from obstacles. This can be even more difficult when flying in unfamiliar                
environments, like in areas where the landscape is monotonous (e.g. desert, or a grass field) or in                 
situations where it’s hard to judge obstacles that can cause a crash (e.g. a pole near the tail rotor). 
  
Through this project, we developed a pilot assistance system using Augmented Reality, that             
gives the pilots enhanced situational awareness in the least intrusive way. With our FlySense              
system, the pilot will be better equipped to handle the difficult flight scenarios mentioned above               
as he will rely on the visual and audio warnings informing him about the possibility of collisions.                 
FlySense will offer a high level of assistance through mapping of surrounding obstacles and              
low-level autonomy to override bad decisions by the pilot.  

2. Use Case 
Lori is an EMS helicopter pilot operating out of the University of Pittsburgh medical center in                
Oakland. As soon as she comes into work for the day, an alert comes in from the dispatcher. “We                   
have multiple severe injuries in a multiple vehicle collision on highway 30 near Clinton. I’m               
sending in the GPS coordinates now, we need an EMS helicopter for the victims as soon as                 
possible!” 

 
Figure 1:​ EMS helicopter pilot at the ready 

Lori grabs her gear and heads out to the helicopter. Upon reaching the helicopter, she grabs her                 
FlySense visor and turns it on. Within seconds the headset boots up. After a 10 second                



calibration procedure, a couple options pop up. With a quick selection, Lori selects a trip               
planning view and enters in the GPS coordinates on the flight computer. 
 
As she starts to take off, a member of the grounds crew sets off her obstacle alarms as he runs                    
across the helipad. She couldn’t even see him herself from her vantage point, so it was a good                  
thing she had full coverage visually and with sound warnings from the Bird’s eye view, which                
automatically popped up in the takeoff sequence.  
 
Once Lori ascends to 200 feet, she engages the autopilot. This makes her job a lot easier, but her                   
FlySense display is still active on “Heads Up Display” view. It gives her constant updates on her                 
attitude, altitude, and a view of the horizon, even as she goes through a couple low hanging fog                  
banks. It also shows her location of flying vehicles around her and what path to take to reach the                   
destination all within the HUD mode. The flight was going smoothly until she reached the               
destination and had to find a good landing spot (​Figure 2​). 
  
The accident she is responding too has swarms of EMS vehicles around the crash, and a set of                  
power lines and multiple trees are surrounding the area, making it a little tricky to come in. As                  
she descends, she looks at the Bird’s eye view image on her screen to check her distance to the                   
power lines, but those are only yellow, without any sound warnings, so she knows she is clear                 
but to stay careful.  

 
Figure 2:​ Lori trying to land on at a congested highway accident scene 

As soon as she touches down, her medical crew springs to action and gets 2 patients aboard the                  
helicopter in minutes. They need to make it back to UPMC as soon as they can since both                  
patients have lost a lot of blood and they only have limited medical resources to cope with that                  
on the helicopter. Lori guides the helicopter backwards outside of the area of trees and power                
lines, relying heavily on her bird’s eye view to safely extricate her helicopter from the tricky                
situation, even as the wind starts picking up dramatically. Once safely up and preventing a               
dangerous crash, Lori guides the helicopter and the patients back to the medical center. 

3. System Level Requirements 
To accomplish the design, development and ultimately deployment of the system, the team is              
following a systems engineering approach. The core system requirements were defined at the             
beginning of the project after careful analysis, research and deliberations among the team and              
stakeholders. All the effort of the team is directed towards fulfilling these requirements. 



Since the commencement of the project, a few requirements have been modified based on the               
feedback received from Pilots at Near Earth Autonomy (NEA). These changes were reported in              
the beginning of the spring semester. The finalized requirements have been stated in Tables 1-4               
below along with their evaluation status. 

Each requirement is mapped to a subsystem (Aerial or User). Also the requirements marked with               
asterisk were the ones modified. 

3.1. Mandatory performance requirements - Table 1 

Subsystem  Description Evaluation Status 

Aerial M.P.1 Receive, and process point cloud data 
from one Velodyne VLP-16 

Validated 

User M.P.2* Recognize 5 voice commands with an 
accuracy of 90% without noise and 70% 
with noise 

Validated during Fall but was 
deemed unnecessary. Feature 
removed from the final system. 

Aerial M.P.3 Detect obstacles in the flight envelope 
projected 5 seconds into future 

Validated 

Aerial M.P.4 Detect obstacles of size greater than 2m x 
2m located at distances less than 10m 

Validated 

Aerial M.P.5 Generate Bird’s eye view image in vehicle 
frame at a rate of at least 10 Hz 

Validated 

Aerial M.P.6 Color obstacles in bird’s eye view (red, 
yellow, green) based on pilot inputs and 
time to impact. Red corresponds to the 
lowest time to impact, followed by yellow 
and green. 

Validated 

Aerial M.P.7 Override pilot commands to stop the aerial 
system at least 1m before the obstacle 

Validated 

User M.P.8 Render all modes on the AR interface at 
refresh rate of at least 10 Hz 

Validated 

User M.P.9* Generate audio warnings based on time to 
impact to obstacle and current pilot input. 
Two levels of sound warnings with same 
pitch for both but varying duration of the 
beeps. 

Modified based on pilot 
feedback, Validated 

3.2. Mandatory non-functional requirements - Table 2 

Subsystem  Description Evaluation Status 



User M.N.1 Easily set up (within 1 minute) by a 
single operator  

Validated 

User M.N.2 Feel natural to the pilot, i.e. Project 
images at focal distance up to 20 meters 

Validated 

User M.N.3 Wearable like normal glass Validated 

User M.N.4 Comfortable to wear headwear for long 
periods of time, i.e. should weigh less 
than 1 pound. 

Validated 

User M.N.5 Displays information in a clear and 
simple manner. 

Validated 

User M.N.6 Be non-intrusive to the pilot, i.e. pilot 
should be able to see through the 
projected images.  

Validated 

User M.N.7 Be non-distracting for the pilot, i.e. pilot 
should be able to engage or disengage 
the system as and when desired and with 
simple voice commands 

Validated 

Aerial M.N.8 Solution hardware is more affordable 
than available solutions (Cost below 
5000 USD) 

Validated 

3.3. Desired performance requirements - Table 3 

Subsystem  Description Evaluation Status 

User D.P.1 Voice commands personalized to 3 users Dropped 

Aerial D.P.2 Override pilot commands to maneuver 
around obstacle maintaining radial 
clearance of at least 2m  

Dropped 

User D.P.3 First Person View (FPV) video overlay      
on the AR interface at frame rate greater        
than 10Hz 

Validated 

Aerial D.P.4 Segment obstacles into 2 categories     
(Trees or building) 

Dropped 

Aerial D.P.5 Recommend feasible trajectory to goal 
maintaining clearance of at least 1m 
from all obstacles, and display in AR 
interface  

Dropped 



3.4. Desired non-functional requirements - Table 4 

Subsystem  Description Evaluation Status 

User D.N.1 Easily customizable to include more 
features and widgets 

Dropped 

User D.N.2 Ability to integrate with flight simulators 
to train pilots 

Dropped 

4.  ​Functional Architecture 
The updated system requirements were used to update the functional architecture, which is             
shown below in ​Figure 3​. The complete system operation is depicted in a block diagram               
capturing functions and overall flow of information. Here, we have divided the system into 3               
stages which are happening continuously and concurrently. These are: 

a. Input:  
i. Pilot Inputs: Our system being an assistive technology always has a           

pilot-in-the-loop. The pilot operates the quadcopter by relying only on the           
FlySense interface  

ii. Onboard Sensors: They are primarily used for perception and state estimation.  
b. Process:  

i. The raw velodyne point cloud data is filtered to extract the relevant points based              
on the flight envelope and pilot inputs.  

ii. The filtered point cloud data is sent into 3 different channels, one for obstacle              
danger classification and coloring, another for the sound warnings algorithm and           
final channel for the emergency braking for obstacle avoidance.  

iii. The obstacle coloring and sound warnings merge together into the Bird’s Eye            
View (BEV) image.  

iv. The FPV video is merged with the BEV and published.  
v. The emergency braking code produces control commands that are sent to the            

flight controller.  
c. Output: 

i. The sensor information is rendered as a Heads Up Display (HUD) and overlaid on              
top of the FPV and BEV video.  

ii. Sound warning are generated based on the dangerous obstacle to alert the pilot. 
iii. The flight controller executes control commands to force braking of the           

quadcopter depending on a potential collision.  



 

Figure 3:​ Functional Architecture 

5. System Level Trade studies  
Jetson Carrier Board 
We needed to use a carrier board for the Nvidia Jetson TX2 since the development board was far 
too large to put on the quadcopter.  We considered three different options, scoring each one with 
respect to the size, weight, which types of ports were available, and the logic circuitry which we 
would use to interface with the DJI. 
Table 5 

 Sprocket Orbitty Elroy 

Size 87mm x 50mm 87mm x50mm 87mm x 50mm 

Weight 28g 41g 35g 

Ports USB HDMI, USB HDMI, USB 

Logic Circuitry 3.3V UART RS-232 3.3V UART 

Table 6 

 Sprocket Orbitty Elroy 

Size 5 5 5 

Weight 5 4 4.5 

Ports 2 5 5 

Logic Circuitry 5 5 2 

Total 4.25 4.75 4.125 



Onboard power regulation: 
As stated later in section 7, the aerial vehicle we had chosen is DJI Matrice 100 quadcopter                 
which has been mounted with Jetson TX2, Velodyne VLP16 LIDAR and a FPV camera. The               
FPV camera is powered via USB from Jetson TX2. The quadcopter frame provides two power               
ports which allow powering the onboard components. The voltage output of these ports is 26V.               
Both the velodyne and Jetson operate at 12V, so a voltage step-down converter was required to                
power them. Table 7 describes the power modules we considered and the criteria used to select                
the one suitable for our needs. 

Criteria/Power modules CCBEC 10A PEAK 25V 
MAX INPUT SBEC 

Step-down DC-DC Power 
Converter 25W 

eBoot Mini MP1584EN 
DC-DC Buck Converter 

Size  43x14x8 mm   46x50x20mm  22x15x2 

Weight 21 grams  Not given 18 

Current rating 6 A 2 A 3 A 

Input Voltage 7V-26V 3.6V-25V 24 V 

Table 7: CC BEC was selected as it provides higher current compared to the other two modules,                 
is smallest and lightest compared to other two. Also, it is used by a lot of RC hobby pilots. 
 
Communication system: 
Reliable communication is important for us to provide real-time and accurate information of the              
surroundings to the pilot. We considered a lot of COTS communication radios which are used by                
the FPV community for transmitting video over long range. There were a few problems with               
them which are stated below: 

1. But all these modules require a receiver in the aerial vehicle (which would add weight).  
2. Also a lot of these radios transmit analog or digital video but the data is transmitted via 

serial protocol. This was a problem for us as the only way to establish connection 
between Epson (AR headset aka user system) and Jetson is via wifi.  

3. These might cause interference with the DJI radio. 
 
After considering these issues, we decided to stick to wifi based communication. During the Fall               
Validation Experiment (FVE), we faced a lot of issues with wifi communication. After testing              
we established the reason for these problems to the interference caused by DJI radio which               
operates at the same frequency of 2.4Ghz. To fix that issue we decided to operate at 5Ghz which                  
had another benefit in that it allowed more bandwidth to transmit video.  
We selected ​Unifi AC-M wifi router along with UMA-D directional antenna​ considering: 

1. Possibility of attaching a directional patch antenna. 
2. Transmission power greater than 20 dBm. 
3. Supports the wifi protocol available in Jetson TX2 wifi module and Epson wifi module. 



Augmented-Reality Headset: 
Our system heavily depends on the quality of user experience, for this we absolutely need to                
make sure that there are no hiccups in the setup or visualization process. We have zeroed in on                  
the capability and ease of programming as the most important factors. 
 

Parameters Weights Microsoft 
Hololens 

Google 
Glass Vuzix Meta 

2.0 
Recon 

Jet 
Optivet 
ORA 

Epson 
BT300 

Capability 25% 5.0 2.0 2.0 4.0 3.0 2.0 2.5 
Ease of 
Programming 25% 5.0 4.0 1.5 5.0 1.5 1.0 4.0 

Cost 10% 4.1 0.3 2.5 0.3 3.4 0.0 2.5 

Reliability 10% 5.0 4.4 3.3 5.0 5.0 2.8 4.4 

Weight 10% 0.0 4.7 4.6 0.7 4.3 4.2 4.2 

Hand Tracking 10% 5.0 5.0 0.0 5.0 0.0 5.0 5.0 

Head Tracking 10% 5.0 2.5 5.0 5.0 0.0 2.5 5.0 

Total 100% 4.4 3.2 2.4 3.8 2.4 2.2 3.7 

Table 8​: Trade studies performed for different Augmented Reality devices. 
AR tread studies showed that Microsoft Hololens seemed best choice. But it turned out to have                
functionality issues that we did not anticipate. This made us consider the next best options; Meta                
2.0 and Epson BT300.  

● Meta 2.0 seemed to be a very good option but due to the huge gap between demand and                  
supply we had to go ahead with the Epson BT300. 

● The Epson turned out to be a lot better than we initially expected, it was very easy to                  
program, robust to shocks, light weight and had good resolution. This sealed our search              
for the right headset. 

6. Cyber-Physical Architecture 
The functional architecture was used to update cyber physical architecture which is shown below              
in ​Figure 4​. The cyber-physical architecture delineates the functions among different subsystems            
and goes into details of implementation on a higher level. It also explains the decisions taken                
based on the trade-studies to identify components, algorithms, etc. 

Our system has 2 major subsystems (Aerial and User). The aerial subsystem is further divided               
into 2 key components - the onboard sensor suit and the onboard computer Jetson TX-2. The                
user subsystem consists of the pilot with the DJI radio controller and the Epson BT-300               
Augmented Reality headset running the FlySense interface. Both the subsystems are interlinked            
by Wi-Fi communication subsystem to enable transfer of data.  

Each of these components are described below: 

a. Aerial Subsystem 
i. DJI M100 Quadcopter is the platform where all the algorithms are tested.  



ii. Velodyne VLP-16 LIDAR gives the raw point cloud data for obstacle detection in             
3D and 360⁰. 

iii. FPV camera gives the frontal view of the quadcopter with a field of view of 80⁰.  
iv. The state estimation is carried out using the onboard IMU and GPS.  
v. Onboard computer Jetson TX2 is used for the following functions:  

1. Calculate Flight Envelope: The flight envelope is calculated from the          
received pose estimate and pilot inputs. This is the addressable area           
around aircraft where aircraft can reach in 5 seconds. This does not            
include sudden malfunction/crash. 

2. Point Cloud filter pipeline: The raw point cloud is passed through a series             
of filters that involve cropping, downsampling and outlier removal. The          
flight envelope calculated is used to extract out only the relevant data and             
get rid of the extra point cloud data. This is done to reduce required              
onboard processing. 

3. Obstacle Classification and Coloring: The filtered point cloud is then used           
to identify the obstacles in the flight path, classify them into different            
danger levels based on the maximum possible pilot input and time to            
impact and color them red/yellow/green based on the same.  

4. Sound Warnings: Among the obstacles detected, the obstacle with least          
time to impact is calculated using Newton’s method and used to generate            
sound warnings.  

5. Bird’s eye view: The obstacles detected along with the most dangerous           
obstacle given by the sound warnings code are combined to generate a            
bird’s eye view image. 

6. The FPV video and BEV combined together and published at one           
frequency over Wi-Fi to the Epson.  

7. Relevant state information of the quadcopter is broadcast over Wi-Fi.  
8. Override pilot commands: The pilot commands are modified if the most           

dangerous obstacle is in the immediate path of the quadcopter. The           
algorithm publishes linear velocity commands for emergency braking. 

vi. The onboard flight controller receives velocity commands and takes control of the            
vehicle to avoid collision.  

 
b. User Subsystem:  

i. The pilot is the heart of our complete system. He provides commands using the              
DJI Radio Controller and FlySense interface to navigate the quadcopter safely.  

ii. Pilot inputs are part of all the algorithms in the software stack. 
iii. The Epson BT-300 headset is used to render FPV video, BEV and HUD based on               

the sensor information and video received from the onboard computer. 
iv. The sound warnings are given to the pilot through the headset as beeps. 



 

Figure 4:​ Cyber-physical Architecture 

7. System Description and Evaluation 
Our final system consists of 3 major subsystems as shown in ​Figure 5​. These are: 

● Aerial subsystem – A DJI Matrice 100 mounted with Velodyne VLP-16 LIDAR , FPV              
camera, Jetson TX2 onboard computer and CC BEC 2.0 (power distribution board). 

● User subsystem – The Augmented Reality headset Epson BT 300 and another audio             
headset for sound warnings. 

● Communication subsystem (COTS)– Unifi AC-M wifi router and UMA-D Directional          
antenna. The directional antenna is pointed manually while flying the quad. 

 

Figure 5:​ Overall System diagram 

The design, development and testing conducted for each of these sub-systems is described in the 
following sections. 



7.1. Aerial subsystem 
The Aerial subsystem consists of multiple hardware and software components. The hardware            
components are described in Modelling/analysis and testing section.  

The software architecture for the aerial subsystem is shown in ​Figure 6. ​The software              
architecture has been developed keeping in mind the testing and safety constraints associated             
with flying an aerial system. We have setup a way to test the system by feeding in data from a                    
recorded bag file. This allowed us to record the data once in our mission scenario and use it                  
continuously to fix minor bugs which would be difficult to fix if we were to move on to live                   
operation directly. It also helped us as a team, as individual developers were able to test software                 
components with minimum dependencies. 

The architecture is shown in ​Figure 6 also includes all the software components (ROS nodes)               
that were created to validate all the system requirements. In essence, we are processing all the                
information onboard to minimize processing required in Epson. This is necessary as Epson is              
based on Android and its difficult to carry out certain tasks like image processing.  

On a high level, following functions are done in each of these nodes: 

1. Preprocessing node: Calculate the flight envelope and filter the received point cloud            
based on the that. It also publishes the tf tree and all the vehicle state information which                 
to be displayed by the Epson. 

2. Bird’s eye view generation: In this node, the filtered point cloud is transformed to world               
frame. These point cloud frames are then buffered to increase the amount of points. The               
buffered point cloud is transformed back to body frame where the points are converted              
projected on a 2d plane to form an image. The pixels of the image are colored based on                  
time to impact calculated for each of the 3d points and dangerous obstacle calculated in               
sound warning node. 

3. Sound warnings: This node generates sound warnings based on pilot’s control inputs,            
aircraft states and surrounding obstacles. The sound warnings are directly published to            
user interface. It also publishes information about most dangerous obstacle which is used             
in flight control node to override pilot control if necessary. 

4. Flight control node: This node allows the option to switch on and off the emergency               
brake feature. When switched on, it received the dangerous obstacle from sound warnings             
node and then overrides the pilot inputs to prevent collision. 

5. DJI Gazebo interface node: This node receives pose information from DJI SDK and             
moves the simulated velodyne LIDAR position in gazebo world. This helps us simulate             
virtual obstacles to test the emergency brake feature. 



 

Figure 7:​ Aerial Subsystem Software Architecture 

 

7.1.1. DJI Interface with custom flight mode for obstacle avoidance 
 
DJI provides Onboard SDK which can be used to communicate with DJI flight controller to               
receive real-time data and to control the quadcopter. Our DJI interface is built around the ros                
wrapper of Onboard SDK which allows receiving data as ros topics and publish commands by               
subscribing to ROS services. 
 
DJI provides information related to state of the aircraft which includes position, attitude,             
velocity, pilot commands, etc. A separate node was written for emergency brake functionality.             
This node subscribes to pilot control inputs and based on position of a switch on the radio                 
controller it either enables or disables our custom flight mode. This custom flight mode converts               
pilot commands to velocity commands for the quadcopter. These velocity commands are            
constrained if pilot’s commands are leading to a collision. Figure 8 shows the basic architecture               
of this node: 

 
Figure 8:​ Pilot override 



Motion Model for our quad 
  
The obstacle avoidance algorithm is based on a feed-forward model. This model was derived              
assuming a linear dependency on drag and gravity, with the drag parameters fitted from actual               
flight data. Assuming a linear system, the position on a specific dimension is given by x_i (where                 
x_i is the ith coordinate of a three-dimensional position state vector): 

 
The formulas are the same for all axis, but the equilibrium speeds are different. 

● In z, gravity plays a role with the zero-input mapped to a non-zero vertical thrust so that                 
the pilot does not have to worry about keeping altitude constant. 

● In x and y, the z Euler angle defines rotations that transpose the body frame inputs                
(left/right or forward/backwards) into the real world. 

● The drag coefficients are substantially different across the XY (we assume that attrition is              
the same for the x and y axis which is approximately true) and z axis (much more drag). 

The quad speed, at any given moment, is: 

 
We performed a calibration flight for our quad where we regressed the drag coefficients (1.2 in                
xy plane and 5 in the z axis) and validated the model. 
 
Comparison between the real data and the closed form dynamics model:  

 

 

Figure 10:​ Comparison between predicted and actual velocities using the selected motion model. 

 
Avoidance Control Algorithm used in FlySense 
 
For obstacle avoidance we can easily determine the time to impact from zeroing the speed               
equation and introducing its value back into the position equation: 



 
This equation can be solved for the equilibrium speed that a pilot input should give, that given a                  
non-zero initial speed at a particular point, would stop at the obstacle location. Nonetheless, the               
equation is transcendent (product log) and Matlab/Mathematica are really bad solving it (C++ is              
bound to be even worse). 
 
Instead of doing this, we solve for two types of situations that are really simple: the “No Return”                  
range (what is the distance the quad travels starting from a non-zero speed and having full                
reverse input) and the “Zero Input” range (the distance the quad travels with a zero input when                 
starting from a non-zero initial speed). 
  
We then fit a straight line between the two limit cases, simplifying the inverse dynamics and                
getting a control that reacts faster than the original function and should be more stable than a                 
non-linear control with a function whose numerical computation is problematic. As a bonus, the              
straight line can be extended beyond the “Zero Input” as we no longer have a domain problem as                  
we did in the “Product Log”. The point where we can give maximum input in the direction of the                   
obstacle and still stop on time is referred to as “Full Control”: 
 
With this approach we were able to operate seamlessly in four different regimes: 

● Type I: The quad is in a state where the obstacle is further away from the “Full Control”                  
and the pilot can do whatever he pleases 

● Type II: the quad is in a state where the obstacle is further than the “Zero Input” range                  
and the algorithm operates in the region of positive thrust inputs (which is a one to                
mapping to a target steady state speed) that tend gradually to zero as the obstacle               
approaches 

● Type III: the quad is in state further away from the “No return range and the algorithms                 
operates in the region of negative thrust inputs that tend gradually to zero as the object                
approaches 

● Type IV: the quad is in a state closer than the “No return” range and only accepts inputs                  
of “full reverse” 

  
So, in directions where there are no obstacles, the pilot is by default in the “Type 1” regime. The                   
detailed test cases can be found in the Annex 1 of this report.​ In figure 11: 

● Y is the computed range (output in m), X is the equilibrium speed (input in m/s) 
● Blue is the “real” product log function and  
● Red is the simplified control (please note that this is not a classic linearization about a                

single point instead it is a simplification that fits across ​two​ different points/regimes) 



  
Figure 11:​ Product log versus “two-points straight line” approach (m=2.9 kg) 

 
7.1.2. Filter point cloud based on flight envelope 
 
Dynamic window 
To reduce the processing load on the onboard computer, the point cloud received from the               
Velodyne LIDAR is filtered based on the flight envelope of the aircraft. We have defined flight                
envelope as the addressable area surrounding the vehicle where aircraft can reach in 5 seconds. 

 

Figure 12:​ Dynamic flight envelope calculation diagram 

The flight envelope at a given time instant is estimated based on the current state of the vehicle                  
and the pilot inputs. Assuming a vehicle starting from rest, the addressable region changes from               
a circular envelope to an elliptical envelope. Taking into consideration a safety clearance and              
ease of implementation, the flight envelope has been approximated as a cuboidal envelope             
surrounding the ellipse. The flight envelope algorithm is depicted in ​Figure 12. 

PCL filter implementation 
The above algorithm was implemented using a cropbox filter from point cloud library. Another              
cropbox filter was implemented to filter the points captured from parts of the vehicle frame.               
Figure 13​ shows raw point cloud and filtered point cloud based on flight envelope. 



 

Figure 13:​ PCL processing before and after filtering 

7.1.3. Obstacle Classification, Coloring and Bird’s Eye View generation  
The output of the PCL filter pipeline is further processed to identify the danger level of the                 
relevant obstacles and color them accordingly. The point cloud is then registered in the world               
frame, buffered by 3 frames to capture all the relevant information and transformed back to the                
vehicle frame. By combining the current state of the quadcopter, the maximum possible pilot              
inputs in all directions and the buffered obstacles in the dynamic window, the space inside the                
window can be subdivided into ellipsoids of different sizes based on different parameters.  
 
For our purpose, we used time to impact as the metric and used three cutoff time limits to obtain                   
the regions. The obstacles are classified into these three danger levels based on their location               
inside the ellipsoid regions.  

  
   ​Figure 14:​ Coloring concept and actual result 

 
The obstacles are then colored Red/Yellow/Green based on their danger levels, as shown in              
Figure 14a. All the obstacles are in the body frame, and give the pilot complete situational                
awareness. The obstacles are inflated and then rendered as a top view image to generate the BEV                 
image. In addition, the most dangerous obstacle determined by the sound warnings algorithm             
flashes as a white dot in the BEV indicating the pilot what is causing the beeps. Figure 14b                  
shows a sample output of the BEV where the arrow indicates the vehicle. The design and color                 
combinations, along with the backend algorithm were all finalized based on the feedback given              



by the NEA pilot, David Murphy. A variety of design options were suggested during the pilot                
workshop, and is briefly outlined below in Table 9.  

Icon (Color 
+ Shape) 

•Icon options – Triangle, Simple Arrow, Arrow with Tail, 
Quad sample image 
•Color options – Blue, Brown 

Simple blue arrow  

(scaled correctly) 

Single Color 
/ Multiple 
Colors 

•Single color –  
❏ Kd-tree with KNN approach to extract clusters 

and segment obstacles 
❏ Metric – Euclidean distance 

•Multiple colors with no height influence (2D) 
•Multiple colors with height influence and opacity (3D) 

Multiple colors with no 
height influence (2D) 

(inflated to look nicer, 
factor of safety) 

Ground 
Points 

•With ground 
•Without ground (passthrough filter when altitude <1m) With ground  

 ​Table 9:​ Art concepts discussed at NEA workshops 
 
The NEA pilot preferred the multi-colored obstacles in 2D as it always indicated a sphere of                
danger (red) while flying, and did not confuse him with too many colors. Figure 15 shows a                 
comparison between the two options. During flight tests, we have reverted back to the 2D               
coloring based on pilot input. The 3D was deemed too distracting.  
 

      
Figure 15:​ 2D coloring (left) and 3D coloring (right) 

 
In addition, it was decided to keep the ground points as it helped the pilot relate better to the                   
surroundings and understand where the ground was. The BEV would not give good             
contextualization across near ground or “high altitude flight” if the ground points are not present.  
 
The simple blue arrow contextualizing the quad location and orientation in the Bird’s Eye View               
was introduced to clearly distinguish between what is happening in front and what is happening               
behind the quad.  



7.1.4. Sound warning generation 
The output of the PCL filter pipeline is processed parallely in the sound warnings generation               
node to give the pilot audio feedback, which is the most direct and influential form of feedback                 
for humans. Here, based on the current state of the quadcopter and the current pilot input, the                 
obstacle points are put into a Newton-Raphson iteration cycle to determine the most dangerous              
obstacle with respect to time to impact.  
 
Since the time to impact calculation for sound warnings was done using the conventional              
Newton-Raphson method, the sound generation could have been really slow with the heavy             
processing. To select only the relevant points, the velodyne height map package backend was              
modified to give obstacle points in 3D. It involved a 2D grid-based approach where all the points                 
in a particular cell are replaced by the centroid and the height is taken as the mean height of all                    
points in the cell.  
 
A grid resolution of 0.2 m was chosen with a total grid size of 300 to give 30m coverage on all                     
sides of the quadcopter. This helped to reduce the number of points from 4000 to around 1000                 
and is seen clearly in Figure 16(A) 

 
Figure 16: ​Sound warning generation from point cloud data (left, A) and a diagram of when to 
generate sound warnings (right, B) 

 
A few important points to note in the sound warnings code are: 

● It is processed parallel to the obstacle coloring code, and provides an additional input to               
perform the blinking in the coloring code 

● The time to impact depends on the current pilot input and warnings appear only if the                
pilot tries to fly towards an obstacle, as shown in Figure 16 (B). The quadcopter is given                 
a footprint padding of 1m on all directions to account for safety. 

● The cut off thresholds used for our purpose are 1s, 1.5s and 2s in the decreasing order of                  
danger. Sound warnings are produced if the time to impact is less than or equal to 1.5s.                 
The code was written to have multiple levels of beep frequency depending on the danger               
level, but for our purpose we found having only one level to be non intrusive. 

 
The equations used to define coloring and sound warnings is described in detail on Annex 3. 



7.1.5 Gazebo simulation 

In order to test our development of emergency stop functionality, we built a gazebo simulator to                
emulate our full system. We first created a virtual sensor model of the Velodyne LIDAR and                
placed this in a environment populated with virtual obstacles to allow us to interact with an                
environment and generate the same type of data that we receive from the LIDAR in real life. We                  
next wrote a Gazebo C++ plugin to move the Velodyne LIDAR around the virtual environment               
based on the control inputs from the DJI PC simulator, which emulates the behavior of the DJI                 
M100 in the air and can be controlled using the joysticks.  

The plugin reads off the current position, orientation, and velocity values of the quadcopter from               
the DJI Onboard API and updates the Gazebo model at a specific rate in order to keep the correct                   
physics of the quad maintained in the virtual environment. This way, we could generate a               
custom flight path in any environment without physically flying the quadcopter.  

Using this system, we were able to effectively test our emergency stop code and validate corner                
cases of the Bird’s Eye View interface since we were able to fly in any environment we could                  
create within Gazebo. 

 

Figure 17​: Introducing virtual obstacles with the Gazebo simulator 

7.2. User subsystem 
The user subsystem consists of the Epson BT 300 AR headset which displays information to the 
pilot without obstructing his view and an audio headset that provides sound warnings based on 
imminent danger. 



 

Figure 18:​ User interface hardware 

The user interface consists of three widgets namely the Heads-up display, Bird’s eye view and 
the FPV video overlayed. The three widgets are strategically placed on the same screen such that 
the pilot can get an immersive experience of the flight without cluttering the field of view. 
 
FPV: 
The FPV shows the pilot what the quadcopter is seeing. This is to mimic the flight experience as 
that of a helicopter where the pilot can only see what is directly ahead of him without any other 
visual feedback. 
 
Heads-up Display: 
The heads-up-display gives only the relevant sensor information to the pilot. The information             
includes the vehicle’s orientation in terms of roll, pitch and heading, ground speed, time to               
impact to the nearest obstacle. 
 
Bird’s Eye View: 
The bird’s eye view accurately depicts the environment around the vehicle. Bird’s eye view is               
capable of showing the finer details of the surrounding environment like trees, buildings, etc. 
 
Sound warnings:  
Based on time to impact and location of the obstacle, sound warnings are generated in either left                 
or right ear. If an obstacle is in left vehicle direction warnings are heard in left ear and if an                    
obstacle is in right of the vehicle direction, warnings are heard in the right ear. This feature has                  
been found to work reliably well on the ground. We will do more tests to check the performance                  
in flight. 
 
7.3. Modeling, analysis, and testing 
The aerial subsystem and the user subsystem were tested independently and together. 

7.3.1. Aerial subsystem 
The aerial system consisted of multiple components mounted on a DJI M100 base kit. A critical                
goal in the design of the final aerial system was the overall weight. DJI recommends a max                 



takeoff weight of 3.6kg. With the DJI frame and the Velodyne LIDAR weighing in at nearly 2kg                 
and 800g respectively, that did not leave much room to work with.  

We modeled all of this weight in a spreadsheet to get an estimate of what were out fixed weights                   
and where we could get rid of extra weight (see Figure 19). One main source of weight we                  
wanted to eliminate was the long cable and interface box that comes with the Velodyne and                
houses a fuse and protection circuitry. We did this by splicing the Velodyne cable data lines                
straight to an ethernet connector. We then put an in-line fuse in series with the power line and                  
attached that directly to our 12V line from our DC-DC power regulator. 

 
Figure 19:​ Weight of the quad after deploying all the needed electronics. 

 

 
Figure 20​: LIDAR weight reduction 



In the design of the system, we also needed a very light and robust DC-DC power converter to                  
allow us to power both the Velodyne and the Nvidia Jetson TX2. Power requirements dictated               
that we ​needed approximately 2 amps at 12V for the Jetson and 1-2 amps at 12V for the                  
Velodyne. The original power module that we made could convert 24V to 12V with 5 amps                
output, so that would have worked well, except the existing design was on the order of 120                 
grams, which was prohibitively heavy. If we were to redesign the board to use light components,                
it would have been expensive and difficult to assemble without very a very good reflow setup, so                 
we looked for commercial solutions. We found a Castle Creations programmable DC-DC            
converter from 24V to 12V that could support up to 10A of current draw, and was specially                 
designed for use in drones.  We used this to power both the LIDAR and the Jetson. 

In order to test if quad would support the required weight, we ran a series of preliminary tests                  
with weights added to the quad. We progressively added 200g weights and flew in roll, pitch,                
and yaw directions to make sure that the quad was stable before progressing to more weight.                
Once we were satisfied that the quad was safe to fly at the projected takeoff weight, we added all                   
the designed components. 

Testing obstacle avoidance in flight and simulation 

After testing the algorithm in the Matlab simulation, we acquired the DJI PC simulator and               
integrated it with the Gazebo simulator to introduce obstacles in the environment. We did              
extensive testing of the algorithm. The flight dynamics model in the simulator was slightly              
different from reality (e.g. we could not change the mass of the vehicle), but this exercise was                 
valuable to ensure the coordinate conventions were well converted across each of the code              
blocks. ​The algorithm inputs and outputs were converted to follow body frame conventions             
instead of world frame conventions. This helped us in linking the code seamlessly with Sound               
Warning node which provides the most dangerous obstacle at any given point.  
 

 
Figure 21​: Testing obstacle avoidance with the introduction of virtual obstacles 

 
Once the basic conventions were corrected and brake functionality was working, we started             
tuning the parameters to get stable braking behavior. We also tested the flight mode switch on                
radio controller to ensure the emergency brake feature can be switched off at any point if                



required. After some testing, the brake functionality was working well in simulation and gave us               
the confidence to test in real world. 
 
For testing in real world we had configured Gazebo simulator to spawn a Huge wall 20m in east                  
direction from wherever the quadcopter takes off. The aircraft was flown towards the wall and               
braking behavior was seen. Initially the braking behavior was a little unstable and was therefore               
tuned on the field. After some further testing, emergency braking was found to work reliably.               
Figure 21 shows emergency brake functionality being tested in the field. The quad stops 1m               
before the virtual wall. 
 

Testing coloring and sound warnings with ROS Bags and simulation 

To test the coloring and sound warnings we have used ROS bag files of actual flights and also                  
connected the code to the Gazebo and DJI simulators. 
 
Coloring tests 
The first set of tests on the coloring were simply checking if the color ellipsoids were consistent                 
across time: they moved with the quad, the color ordering was correct and the shape was                
extending when the quad was travelling in one direction and the pilot input was constant. The                
opposite occurred when the input was in opposition to the motion. This part was the most                
difficult one, because it implied standardizing all the conventions across all the modules in the               
code (e.g. using body coordinates vs world frame coordinates, FLU instead of ENU, etc)  
 
The second set of tests were related to checking the color cutoff areas which was done by                 
measuring the distance to the obstacle and computing the time to impact. This was done by                
printing the algorithm inputs on the screen and manually introducing the data fed to the model in                 
an Excel file that was created for this purpose. This Excel file would compute a small trajectory                 
and the time to impact, that was compared with what the c++ code was outputting. 
 
Sound tests 
The first set of tests was done by opening RVIZ together with the Bird’s Eye View and tracking                  
the white dot that marked the point generating the sound warnings. The introduction of this               
feature was a pilot requirement (David Murphy said, “I need to know which obstacle is in my                 
path given that the coloring only gives insight on what I might do, not what I am trying to do”)                    
and was also extremely useful for debugging. When we got the conventions correct, we could               
easily see if the projected point of collision “seemed correct” (e.g. an input to the right cannot                 
generate a prediction of collision to the left or any other random direction). 



The second set of tests was done in the same fashion as the coloring. We printed the inputs in the                    
screen and introduced those values in an Excel file that was created for the effect. We then                 
compared the values to check that the code was processing correctly those inputs. 

The backend of the complete interface is shown in Figure 22, with the left image showing the                 
BEV and terminal output for the sound warnings and the right image showing the simulated data                
and sampled point cloud in RViz.  

 

Figure 22: ​Generating the appropriate coloring for the user interface 

The complete interface as seen by the pilot during one of the most dangerous flight test scenarios                 
is shown in Figure 23. The pilot relies only on FlySense with no line-of-sight with the                
quadcopter and lands it exactly at the middle of two containers.  

      

Figure 23: ​(A) HUD and Bird’s Eye View as seen by the Pilot (B) Landing in between two 
containers  

7.3.2. User system 
A brief description of the major tests conducted during the SVE is given below: 

Test to evaluate the HUD​- The pilot sees the telemetry data coming from the vehicle. The pilot                 
takes off flight and can see the system changing roll, pitch, heading, and the values being                
updated on the HUD. 



Result​- The telemetry information was updated on the HUD mode at a refresh rate of 10Hz 

Test to evaluate the Bird’s Eye View​- The pilot takes off flight and sees the quadcopter marked                 
as an arrow and only the obstacles around the addressable region. The operator follows a a flight                 
sequence containing obstacles. The vehicle starts at a location greater than 5.5 seconds to impact               
away from every obstacle, and no warnings are heard. As the vehicle approaches the first               
obstacle, the sound warnings start when time to impact is less than 5.5 seconds. As the vehicle                 
moves closer, the time to impact decreases and warnings become more frequent. Once the              
vehicle crosses the obstacle, the warnings stop. The same scenario happens when the quadcopter              
encounters this obstacle throughout its course. 

Result​- All the requirements in this test were successfully completed. The images were rendered              
at 10Hz, which proved very natural and real time to the pilot. The pilot was able to clearly                  
distinguish through sound the location of the obstacle, and get a better understanding of the               
environment through the visuals.  

7.3.3. Flight test summary, learnings and progress 
The flight testing covered various phases of the development cycle: initial testing and             
characterization, unit testing of subsystems, then final integrated system testing. We flew for a              
total of ~4.5 hours over the course of our development, with the detailed flight log presented in                 
Annex 2. 

8. Spring Validation Experiment Evaluation 
The spring validation experiment was performed at Nardo which essentially consisted of 2 tests 
each with different objectives. 

 

Figure 24: ​Nardo test plan 
 
Item Description 
Objective ● Test Obstacle Avoidance of our Flysense system 

● Test Obstacle detection on Bird’s eye view, sound warning generation, HUD           
display and FPV video 

Equipment ● DJI Matrice 100 with FlySense Hardware 



● Epson BT300 AR Headset / Android tablet 
Procedure  1. Pilot tries to fly the quadcopter into a virtual wall 

2. Pilot will fly quadcopter along route, first around the containers ​forward 
3. At opening of container enclosure, pilot yaws the vehicle around so the front              

(FPV side) is facing away from the back 
4. Pilot navigates ​backward​ to back of enclosed area, and lands 
5. Pilot takes off, turns 180 deg around, then flies ​backward​ out of enclosure 
6. Pilot navigates vehicle ​forwards​ around the enclosure back to the start 
7. Pilot navigating exclusively by FPV and BEV 

Result 1. The quadcopter doesn’t let the pilot fly ​closer than 1 meter to the virtual              
obstacle 

2. The pilot was able to observe the HUD display updating values and horizon             
without any lag i.e, ​at 10hz 

3. The pilot can visualize immediate obstacles around him based on the flight            
envelope and obstacles ​less than 1 meter​ away on the Bird’s eye view. 

4. Pilot uses FPV video to know where the quadcopter which technically is            
analogous to the pilot being on the helicopter. The FPV is being ​updated at              
10hz​. 

5. The pilot can hear sound warnings based on the distance/time to impact            
between the nearest obstacle in case it is ​less than 1 meter or 5 seconds​. 

6. The pilot flies the quadcopter exclusively based on the feedback from the            
flysense system and lands it successfully in space constrained zones. 

Table 10: ​Description of the test plan 

9. Strong and Weak points of the system 
The biggest overall strength of the FlySense system is the user system. All our system tests were                 
performed with a professional pilot, our ultimate end user, and he was extremely happy with the                
FlySense interface. Quoting David Murphy from NEA, “The FlySense system was easy to use. I               
moved through the test card quickly in difficult windy conditions. I would not have even               
attempted to fly FPV without the FlySense technology. It was fun to use and I was eager to try it                    
in many different applications.”  

Moving on to the strong technical points of the user interface, the images are very crisp and                 
projected 20m in front of the eye. The visual maps are non-intrusive and provide a clear picture                 
of surroundings. The images are streamed with a latency of less than 1s making it possible to use                  
FlySense interface standalone while operating an aerial vehicle. The sound warnings are heard             
only when needed, and the flashing dot helps the pilot understand where the danger is. The red                 
areas help the pilot be more careful while flying. The AR headset was lightweight and               
comfortable to wear for long periods of time.  

The strong points in the aerial system are that it is able to capture all the relevant obstacle                  
information considering the hardware limitations. The onboard flight controller is robust and            



responds to RC commands with no latency. The localization of the quadcopter is very accurate               
due to the onboard RTK GPS.  

There are a few weak points in both the user and aerial system. The limitations of Android                 
development environment make it difficult to improve the rolling tapes in the HUD. The AR               
headset is affected by lighting making it difficult to see what is projected on the screen, due to                  
which we had to tape the glasses. Another minor limitation is the lack of complete 3D                
perspective view, which is more of a nice-to-have.  

The users of our system during the demo were seen to rotate their head and see how the FPV                   
video changes. Since our quadcopter had only one camera, it was not possible to provide               
anything more than a frontal view. The aerial system had a few hardware limitations mainly due                
to the weight constraints of our vehicle. The LIDAR being 16 beam misses out on very thin but                  
lethal objects like cables and transmission wires. This would require the use of camera and               
computer vision algorithms for detection and conveying the same to a pilot.  

10.Project Management 
10.1. Schedule 
Over the course of the semester, we had mixed success with adhering to our development               
schedule. Many of the preliminary tests were done within a week of the intended deadline, but                
the FPV test and the stop functionality test were significantly delayed. This was due to a delay                 
in obtaining hardware to integrate and limited support for doing additional tests in the case of the                 
FPV functionality and delays in generating an accurate model in simulation for the stop              
functionality.  Both timelines could have been improved with a better balance of resources. 

The following schedule describes the test plan and development timeline for each subsystem 
component of the FlySense project. 

 

Table 11​: Overall Test plan 



10.4. Budget 
Budget Category Amount 

Communications $237.82 

Power Hardware $169.93 

Onboard computer $475.00 

Test Infrastructure $828.03 

Mech Hardware $205.94 

DJI hardware $198.52 

Sensing Hardware $50.42 

Data Storage $83.98 

User Interface $799.00 

Total $3647..64 

Table 12:​ Categorized Budget 

In total, we spent approximately 75% of our total available budget. We were able to get a                 
significant number of components sponsored, namely the big-ticket items of a Velodyne VLP-16             
LIDAR ($9000) and DJI Matrice 100 Drone ($3000). 

The overall budgeting process worked well, we were never in any danger of going over our                
allotted budget once we secured the donations of the most expensive items. We kept a close eye                 
on how much we were spending to always stay within the allotted amount. 

10.5. Risk Management 

 
Figure 25:​ Risk diagram for the Spring Semester 



Figure 25 shows the risks that we were tracking throughout the Spring Semester. Some notes on                
some major risks and their mitigation strategies: 

● (14) related to the weight of the drone being too heavy for flight. This was a significant                 
problem at the beginning of the Spring semester, with us projected to be 300 grams               
overweight, but through weight cutting measures discussed in previous sections, we were            
able to keep the weight at the maximum recommended of 3.6 kg. This was still a                
significant risk, since if we had to make any modifications to the hardware, the weight               
could go up, and potentially put the quad in danger, but we kept a close eye on the                  
dynamic behavior to characterize the drone and limited any hardware changes in order to              
limit the risk of this problem. 

● (21) was a risk associated with the WiFi communication. In the Fall semester, we had               
significant problems with our communication system, making it a huge risk for us. We              
purchased all new hardware to limit the occurrence of the problem, but we were still               
limited in the range of the antenna, so any long distance testing could trigger problems.               
We adjusted our flight plans accordingly. 

● Weather (20) was a significant risk that we could not do much about. We limited the                
impact of this by planning ahead and testing as much as possible while we could, though                
we still got behind in our test plan over the course of the semester when work schedule                 
did not match well with the weather schedule. 

● (9) was related to availability of a testing ground. We did a significant amount of testing                
in Schenley Park, but people in the past had been hassled by park staff for flying. This                 
did not occur to us until the day of SVE, but we had a backup flight area of NREC                   
(through Dimi) that we could access if Schenley Park became unavailable to us. 

● (10) related to the processing of FPV frames to keep the system real-time. This was               
mostly dependant on the WiFi connection (addressed earlier) and the amount of data             
passed through. We limited the amount of data as much as possible and had plans to                
downsample the number of buffered frames if the frame rate became a significant             
problem. 

11.Conclusions 
 
The team was able to develop a robust flight system which allowed quick deployment and               
testing. As mentioned above, the FlySense system was validated during SVE, SVE Encore and              
couple of times during flight tests at NEA Flight Test Facility at Nardo. The rigorous flight                
testing allowed the team to refine the system and ensure that it works properly in real world                 
setting. The system successfully passed all the stated requirements.  
 
The assistance features of the system were also appreciated by NEA Pilot who got really used to                 
trusting the system when it came to flying non line of sight with obstacles around. On numerous                 



occasions pilot just had to trust the bird’s eye view and sound warnings as obstacle was not even                  
visible in the FPV stream, especially when flying backwards. 
 
The team sees following possible improvements to the system: 

● Continuous obstacle avoidance based on vector field potential. 
● Point cloud registration to improve bird’s eye view image. 
● Use depth cameras or rotating hokuyo to replace Velodyne LIDAR.  

12.Lessons Learned 
• Testing a system is much more demanding than testing a single sub-system (e.g. network) 
• Designing for a human is substantially different from designing for a robot (e.g.             

mapping) 
• Sometimes the simplest possible solution works well (e.g. direct from LIDAR) 
• Time is an extremely scarce resource that needs to be well managed from the beginning 
• Cross-functional tasks need to be planned as early as possible to ensure work bandwidth 
• Requirement ownership is crucial for success (demand vs “sell them to someone else”) 
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Annex 1: Obstacle avoidance test cases 
  
Below are some of the test cases ran on the Matlab code used for obstacle avoidance. 
  

1) We started with a very simple case with the vessel steading still, then initiating a 1D                
movement towards a stationary obstacle situated 25 meters away. 

● The first graph shows the “Full Control” range, the “Zero Input” range and the “No               
Return” range 

● The second graphic shows the actual speed and the target speed (this has a one to one                 
mapping to the thrust inputs and corresponds to a steady state) 

● The third graphic shows the actual speed vs the distance to the obstacle (please note that                
the algorithm first allows full acceleration before constraining the pilot) 

● The last graphic shows the target speed vs the distance to the obstacle (please notice that                
all inputs are on the “positive” thrust side 

 
 

2) Cases where the quad starts with non-zero initial speed (1D) 
 

● Below the case where the algorithm could not prevent the collision (e.g. a moving              
obstacle that just crossed the path). It needed minimum 10.4 meters to stop but only had 8                 
meters available before crashing. 

 



 
 

● Below the intermediate case where only negative thrust inputs can be issued 

 
 
 

● The case where the quad can prevent collision with positive thrust inputs 
 



 
Note: on the code implemented in the quad we defined a minimum clearance distance so that the                 
quad would not stop when physical contact was achieved with the obstacles, but slightly before. 
 

● The case where the quad can do any input for the first leg of the flight and gets gradually 
constrained as it approaches the obstacle 

 
 
 



3) Tests in 2D 
  

● Flight is initiated with a speed in X and the pilot gives a continuous input in Y in the                   
direction of the obstacles. The algorithm successfully stopped the quad 1 meter before the              
obstacle (clearance distance defined in the simulation). 

 
● Same as the previous case, but at 5.6 seconds the pilot changes its mind and introduces a                 

continuous input in the Y direction away from the obstacle 

 
 



● Same as the first 2D case, but the pilot input is changed at 5.6 seconds to an input in the                    
X axis 

 
 

4) The last set of tests were done in 3D 
 

● Pilot input is done continuously in the direction of the obstacle 

 



 
● Same as the previous 3D case, but the pilot input at 12 seconds is changed to a side input AND                    

continues to introduce an input in the direction of the obstacle 

 
 
  



Annex 2: Detailed flight log 
 

Flight # Date Location 
Flight 
Time Summary 

1 1/31 NSH 5 Quad pushed by wind 

2 1/31 NSH 4 Quad pushed by wind, otherwise stable 

3 1/31 NSH 5 Fairings removed, drift in position. IMU cal needed 

4 2/2 NSH 8 3050g takeoff weight, position hold ok 

5 2/2 NSH 14 3450 takeoff weight, position hold ok 

6 2/9 Schenley Park 4 IMU error when landing, 3650g takeoff weight 

7 2/9 Schenley Park 7.5 good agility, IMU error, 3650g takeoff weight 

8 2/18 Schenley Park 5 Flight check 

9 2/18 Schenley Park 5 vertical accel, full yaw, backward at max speed 

10 2/18 Schenley Park 5 forward and back at max speed 

11 2/22 Schenley Park 8 dynamics tested, data recorded, takeoff weight 3.6kg 

12 2/22 Schenley Park 10 communications test, problems at higher alt, fine otherwise 

13 2/27 Schenley Park 4 First flight with Velodyne, Jetson both onboard 

14 3/4 Schenley Park 9 DJI, velodyne data recorded. Flew near obstacles 

15 3/11 NSH 9 DJI, velodyne data recorded. Flew near obstacles 

16 3/11 Cut 1 DJI, velodyne data recorded. Batt. temp warning 

17 3/18 Schenley Park 8 DJI, velodyne, FPV data logged. Flew near obstacles 

18 4/6 Nardo Airfield 10 Familiarization Flight, some flying near obstacles 

19 4/6 Nardo Airfield 10 Flying near obstacles head in, windy 

20 4/6 Nardo Airfield 10 Flying near obstacles backwards, windy 

21 4/6 Nardo Airfield 10 Flying near obstacles backwards, windy 

22 4/6 Nardo Airfield 10 Flying near obstacles, windy. Stayed low to the ground 

23 4/6 Nardo Airfield 5 Flying near obstacles, windy. Stayed low to the ground 

24 4/23 Cut 5 Evaluated stop. Quad very violent. Magnetometer error 

25 4/23 Schenley Park 5 Evaluated stop. Quad very violent at higher speeds 

26 4/25 Schenley Park 5 
Testing pre-SVE. Stopped by park ranger. Stop functionality 
working 

26 4/26 Nardo Airfield 5 latency in FPV. Pilot asked for coloring change 

27 4/26 Nardo Airfield 10 new coloring, sideways inside container area, then back 

28 4/26 Nardo Airfield 10 sideways + backwards flying near obstacles btwn containers 



29 4/26 Nardo Airfield 10 takeoff inside container area and fly out 

30 4/26 Nardo Airfield 10 backwards in, turn around, backwards out 

31 4/26 Nardo Airfield 2 takeoff, distance limit triggered 

32 4/26 Nardo Airfield 10 takeoff, flew  to bee hives, come back 

33 4/26 Nardo Airfield 10 flew around building, into containers, out around obstacle 

34 4/26 Nardo Airfield 5 stop functionality demonstrated 

35 5/2 NREC 5 stop functionality demonstrated 

36 5/2 NREC 10 BEV functionality demonstrated 

 
  



Annex 3: Bird’s Eye view sound and coloring formulas 
  
Coloring Algorithm 
The coloring algorithm code works as follows: 

● The collision surface is an ellipsoid that will expand across time based on the maximum               
quad dynamics (initial conditions and maximum pilot input in any direction) 

● Frame of reference for function inputs will have 
○ All speeds and coordinate inputs are in the body frame of the quadcopter 
○ X axis pointing forward and aligned with Velodyne reference axis 

 
Three cut-off times are selected (red, yellow and green). For each point is tested sequentially if 
the point can fit inside the ellipsoid defined by: 
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Where: 
        z1 = (Az*Vz0+m*g)*(exp(Az_m*t)-1)+exp(Az_m*t)*(-Az*g*t+Az_m*Az*(z0-z0bs); 
        y1 = (Axy*Vy0+0)*(exp(Axy_m*t)-1)+exp(Axy_m*t)*(-0+Axy_m*Axy*(y0-yObs); 
        x1 = (Axy*Vx0+0)*(exp(Axy_m*t)-1)+exp(Axy_m*t)*(-0+Axy_m*Axy*(x0-xObs)); 
 
        z2 = exp(Az_m*t)*(1-Az_m*t)-1; 
        y2 = exp(Axy_m*t)*(1-Axy_m*t)-1; 
        x2 = exp(Axy_m*t)*(1-Axy_m*t)-1; 
 
 



Note: As per the input from NEA pilots, we removed the z component to avoid coloring an 
obstacle with too many colors (e.g. tree branches have multiple heights). 
 
Whenever “Test” is returns a value between zero and 1, the object is inside the ellipsoid built                 
with the selected cut-off time to impact. These ellipsoids are computed taking into account the               
current state and the maximum potential pilot input. For efficiency, we start allocating from the               
green area so that we do not need to run through a green point twice. From there, what fails goes                    
through the yellow cycle and what is left is assigned by definition to red. 
 
Sound Algorithm 
The sound algorithm code works as follows: 
  

● The collision surface is the body frame ellipsoid translated without any deformation            
across the projected trajectory (initial conditions and current pilot input) 

● The output from this function is only the most “dangerous” obstacle, corresponding to the              
point that has the shortest positive collision time based on current pilot input 

● The output of this function is reused an input in for the obstacle avoidance function 
● Frame of reference for function inputs: 

○ All speeds and coordinate inputs in the body frame of the quadcopter 
○ X axis pointing forward and aligned with Velodyne reference axis 

For each axis, the Newton method is used to search for a collision time between 0 and 30                  
seconds. Any collision time outside this interval is discarded. Same whenever the number of              
loops exceeds a pre specified threshold: 

Increment (x axis): 

        xTest=xObs-(x0+1/Axy_m*(Vx0-VeqX)*(1-exp(-Axy_m*t))+VeqX*t); 

        dxTestdt=exp(-Axy_m*t)*(Vx0-VeqX)+VeqX; 

Update (x axis): 

        F=xTest;dFdt=dxTestdt; 

        t=t+F./dFdt; 

The process is done successively first for the x axis, followed by the y axis and the z axis. To                    
remove false positives (when a collision time is found on one of the axis but does not generated                  
collision when the other axis are taken into account), the projected collision time is substituted               
into the motion equations. If the distance between that point and the obstacle is below the                
clearance distance, it is considered a valid positive. If not, it is considered a false positive. 


