INDIVIDUAL LAB REPORT
Progress Review
MRSD Project

Name: Keerthana P G
Andrew ID: kgopalak

Team D

20th October 2017

Teamwork

Ritwik: Visual data pre-processing and resnet

Luka: speech pre-processing

Keerthana: LSTM and speechnet, PCB design, dataset review
Luxing: Speechnet, Website update

Details

After consulting with Emotech, Prof Jeff Cohn and Prof Louis Philip Morency, and performing
literature review on our own, we realised that extracting affective information from text is a hard
task in itself and involves a larger delay due to high processing required. Also, there aren’t many
well supported APIs that convert speech to text reliably without significant delay. Due to this, we
decided to start working on bimodal detection using visual and vocal modes to get started. We
also edited the requirements to suit this change in focus.

Value Proposition

Upon discussion and literature review we understand that a lot of work has been done on
unimodal emotion recognition. To this effect, we’'d be focusing on the multimodal part, of
combining different modes of input, and enhancing predictions by weighing the importance of
and accuracy from different modes.

Dataset Review

After an extensive search for datasets and trade study we decided to go ahead with IEMOCAP,
SEMAINE and Microsoft MISC.

Parameters[1] on which datasets were compared involve number and diversity of subjects, size
of data, whether they were annotated for emotions, number of raters, dimension of emotions,
whether script was available, presence of all three modes, number of subjects in conversation
simultaneously, permission to use, etc. Details on trade study performed were submitted in
CoDR.

Literature Review

After extensive literature review, we decided to implement a hybrid network for bimodal emotion
recognition as detailed in [2] to get started. Once we have a trained model, we’ll tune
parameters, modify architectures, introduce the third mode and make other changes to improve
the overall network and accuracy.

Data Pre-processing

1. Speech: The speech input to the network as detailed in paper required a 16kHz
sampling rate and therefore a 96000 long input vector every 150ms. However, both

SEMAINE and MISC has a different input rate. Luka handled this part by selective
sampling.

2. On dyadic datasets: Since SEMAINE has more than one subject in conversation, it is
required to separate the speech of two different speakers and feed them into network
separately.

3. Image: Cropped images, after resizing to input size are fed to the resnet. Ritwik is doing
this part using dlib. Some datasets such as MISC only contain coordinates of landmark
features and using this data in our network that expects face images would be a
challenge.

Network Architecture

‘ Speech Network I

‘ J\N‘(‘l features

1x20 conv, 40
max pool
1x40 conv, 40
max pool

e
% Hyy Hea
@
o .4 dl
e
2 L
-
i "
R z S
gl gL
a Visual Network N g <z
o~
=]
: =, el 2 Layer LSTM
- w S
- fa w| W o O o o ﬁﬂmv
© gl[@B8K(|[|RSa G SRR 5
= S 3 640 features
a 2 > > >
= & [«*§ cE EEE gz EzElr B]
2|8 |2 8 88 g 88 888 o
b= E m o - oMo - om o = m o o
S Amal Eadl \3EX iri‘..:‘y
\ g; x4 xb x3 /

Figure 1: Network Architecture[2]

Individual Responsibility

| was responsible for implementing speechnet(along with Luxing), implementing LSTM and
figuring out manipulator mechanism and PCB design for mechanical component.

The codes were made modular by using specific classes and combining all functions of a
particular net to the respective class. A main.py file was introduced to interface between
different parts of the network and call the modules.

Speechnet

The speech network takes an input vector of length 96000 and has 2 convolutional layers, 2
RelLU layers, 2 maxpool layers and a dropout layer. The first convolution layer has a kernel size
of 20 and 40 channels while the second has a kernel size of 40 and 40 channels. Padding and

stride for both are 0 and 1 respectively. Each convolutional layer is followed by a ReLU layer
and a maxpool layer. Kernel sizes of the two maxpool layers are 2 and 10 respectively. At the
end, the dropout layer acts with a probability of 0.5. The output of the speechnet is feature
vector of length 1280 that is concatenated with the output of the ResNet and fed to the LSTM.

| wrote the layers using torch.nn and integrated them with Luxing’s class based modular
structure.

Multimodal LSTM

The LSTM network has 2 layers with a hidden size of 250 each. The internal workings of an
LSTM are summarised the following equations[3]

Input gate : i.= o(WOx+U%h, _ +b®)

Forget gate : f,= o(WO%+U", ,+b®)

Output gate: f,= a(Wx +Uh,_,+b")

Update gate: u,= o(W“x+U"h,_,+b™)

Memory cell: ¢,= i, u,+f, * c,

Hidden cell: h,= o, tanh(c,)

Here t is step number.

| implemented the LSTM layers using torch.nn.

Mechanism and PCB design

Our objective was to design a manipulator mechanism that can track and align itself with the
face of the user. The details of design and rationale behind selecting components have been
detailed in the PCB conceptual design submitted yesterday. | was single handedly responsible
for this part.

Challenges

1. Communicating with the entire team, making sure everybody is on the same page,
peacefully resolving conflicts, working with people having different technical and
language expertise and time commitments(owing to midterms), dealing with unhealthy
team playing attitudes, distributing and compartmentalising work has been our biggest
challenge so far. We are still working on it.

Things to ponder

1. Currently we are using a ReLU nonlinearity after every convolution layer in the speech
network in an attempt to make the generalisation function non linear. However, since a
number of input values are negative, the ReLU nonlinearity ignores them and they do
not contribute to variations in the feature vector. This may not be an optimal situation as
we may lose valuable information. We will discuss with mentors on if this is a good idea,
whether we can get rid of the nonlinear layer or we should use some other nonlinear
function like sigmoid that acknowledges negative values.

2.

Upon discussion with Emotech we understand that feeding pixel values than landmark
features gives better results as the network is able to capture subtleties in the image that
contribute to affective expression, information that would be passed over if the network is
only fed landmarks. However, currently, the MISC dataset we possess has only
coordinates of landmarks and procuring full videos require further permissions. The ways
to factor in the variations in data available across datasets is something we should
consider.

Future Plans

ok wn =

Implement backpropagation in LSTM and speechnet.

Explore the use of attention models[4]

Connect output of speechnet and resnet to input of LSTM

Ensure that speech/image pre processing are coherent to the input requirements
Perform preliminary training

Procure hardware for mechanism design

References

oD

http://emotion-research.net/wiki/Databases
https://arxiv.org/abs/1704.08619
https://nlp.stanford.edu/pubs/tai-socher-manning-acl2015.pdf
https://arxiv.org/abs/1409.0473

http://emotion-research.net/wiki/Databases
https://arxiv.org/abs/1704.08619
https://nlp.stanford.edu/pubs/tai-socher-manning-acl2015.pdf
https://arxiv.org/abs/1409.0473

Codes

Speechnet.py

import torch

import torch.nn as nn

from torch.autograd import Variable
import numpy as np

class SpeechNet(nn.Module):
def __init__(self):
super(SpeechNet, self).__init_ ()

first convolution layer
self.convNet1 = nn.Conv1d(in_channels=1, out_channels=40, kernel_size=20, stride=1,
padding=0, dilation=1, groups=1, bias=True)

#first pooling layer
self.pool1 = nn.MaxPool1d(kernel_size=2, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False) #paper states kernel size is 2, rest Keerthana defined

#second convolution layer
self.convNet2 = nn.Conv1d(in_channels=40, out_channels=40, kernel_size=40, stride=1,
padding=0, dilation=1, groups=1, bias=True)

#second pooling layer
self.pool2 = nn.MaxPool1d(kernel_size=10, stride=None, padding=0, dilation=1,
return_indices=False, ceil_mode=False) #pool size = 10 as given in paper.

#dropout layer
self.dropout = nn.Dropout(p=0.5, inplace=False, training=self.training)

def forward(self, speechinput):
output=nn.ReLU(self.convNet1(speechinput))#why are we using ReLU non linearity and
not signoid or something else? wont we lose -ve values
output=self.pool1(output)
output=nn.ReLU(self.convNet2(output))
output=self.pool1(output)
output = self.dropout(output)
output = output.view(1, 1280)

return output

model = SpeechNet()
input_vector = Variable(torch.Tensor(np.random.randn(1, 1, 96000)))#need to change this.

def train(input):
model.train()
output = model(input)
print(output)

train(input_vector)

Multimodallstm.py

import torch.nn as nn
from torch.autograd import Variable
import torch

To be put together with speech CNN inside one Net
input_size = 1280 + 512

hidden_size = 256

seq_len =150

batch_size =1

num_layers = 2

rnn = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers)
input = Variable(torch.randn(seq_len, batch_size, input_size))
hO = Variable(torch.randn(2, batch_size, hidden_size))

c0 = Variable(torch.randn(2, batch_size, hidden_size))
output, (hn, cn) = rnn(input, (h0, c0))

print(output)

print(cn)

Main.py
import torch.nn

from __ future__ import print_function
import argparse

import torch

import torch.nn as nn

import torch.nn.functional as F

from torch.autograd import Variable

Training settings

parser = argparse.ArgumentParser(description='"PyTorch MNIST Example')

parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)")

parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)")

parser.add_argument('--epochs', type=int, default=10, metavar='N’,
help="number of epochs to train (default: 10)")

parser.add_argument('--Ir', type=float, default=0.01, metavar='LR’,
help='learning rate (default: 0.01)")

parser.add_argument('--momentum’, type=float, default=0.5, metavar="M',
help="SGD momentum (default: 0.5)")

parser.add_argument('--no-cuda', action="store_true', default=False,
help='disables CUDA training')

parser.add_argument('--seed', type=int, default=1, metavar='S’,
help="random seed (default: 1)")

parser.add_argument('--log-interval', type=int, default=10, metavar='N’,
help="how many batches to wait before logging training status')

args = parser.parse_args()

args.cuda = not args.no_cuda and torch.cuda.is_available()

torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)

def emotionrec():
#load input from speech
#do speech processing
#call speech network
model = speechnet()
if args.cuda:
model.cuda()
#parallelly, do image processing
#after both done, call multimodallstm.py

