
 

INDIVIDUAL LAB REPORT 3 
Progress Review  

MRSD Project 
 

Name: Keerthana P G 
Andrew ID: kgopalak 

 
Team D 

 
27th October 2017 

  



Teamwork 
Ritwik, Luxing: They linked Resnet, LSTM and speechnet, and debugged by training to see if 
loss decreases 
Luka: speech and text pre-processing 
Keerthana: Text parsing and embedding, bidirectional LSTM for text encoding, dual attention 
network for speech and text 
 

Individual Responsibility 
I was responsible for generating word vectors for verbal modality from speech passed as 
strings. I also implemented a bidirectional LSTM for text encoding and a dual attention network 
for speech and text modalities. 
 

Text-preprocessing 
The dialogues of a user between time intervals are parsed as strings from Luka’s function and 
passed into the wordembed.py function. This function first parses through the sentence using 
regular expressions, separating words and removing punctuations, digits, trash characters, etc. 
It then uses Google’s pretrained word2vec[1] model to generate vector embeddings for this 
array of words. Word vectors thus generated are real-valued representations of words in 300-D 
space such that words that share semantic relatedness in the corpus are located in close proximity 
to one another in this vector space. These real values may even permit arithmetic operations on 
words, such as, king-man+woman=queen. The word2vec model that we are using is pre-trained 
on Google News corpus. 
 
Stage of Implementation 
Working fine. Descriptions of actions given in parenthesis have to be removed. 
 
Example output of code:  
Roses are red and violets are blue 
['Roses', 'red', 'violets', 'blue'] 
[[-0.3203125   0.18847656 -0.33007812 ..., -0.18359375  0.08544922 
   0.32226562] 
 [ 0.09716797 -0.08496094  0.27148438 ...,  0.04614258  0.14746094 
   0.14355469] 
 [ 0.05151367  0.31835938  0.03466797 ..., -0.02233887  0.2890625 
   0.1953125 ] 
 [ 0.0390625   0.08642578  0.22363281 ...,  0.04663086  0.02258301 
  -0.15722656]] 
 

Bidirectional-LSTM for Text Encoding 
For text processing, we have decided to use a bidirectional LSTM as detailed in [2] 



Given word embedding of T input words {w1, · · · , wT }, the vectors are fed into the bi-LSTM. 
 
h (f) t = LSTM(f) (xt, h (f) t−1) 
h (b) t = LSTM(b) (xt, h (b) t+1),  
where h (f) t and h (b) t represent the hidden states at time t from the forward and backward 
LSTMs, respectively. 

 
Fig1: Bidirectional LSTM for text encoding. Source:[2] 

Then we add the two hidden states at each time step 
ut = h (f) t + h (b) t  
To construct a set of feature vectors {u1, · · · , uT } where ut encodes the semantics of the t-th 
word in the context of the entire sentence. These context vectors are then passed to the dual 
attention network. 
 
Stage of Implementation 
Currently, we’ve coded the layers for the bi-LSTM. However, it has to be linked with 
wordembed.py and attention.py and training modules have to be written. We have not finalised 
the number of hidden layers. 
 

Dual Attention Network 
The dual attention network measures semantic similarity between vocal and verbal inputs by 
learning a joint space where the two feature vectors from the two modes are directly 
comparable. This will help the network converge faster by encoding shared concepts that 
co-occur together. Additionally, the text and vocal vectors aren’t paired while training, while 
maintaining separate memory vectors, making it possible to directly compare arbitrary verbal 
and vocal vectors. In our implementation, cross-modal similarity is calculated as an inner 
product of the context vectors after each layer of training. 



 

 
Fig 2: Dual attention network Source: modified from [2] 

 
Unimodal attention: 
Here, the context vectors from each model is acted upon by a two-layer feed forward neural 
network to obtain attention weights by focusing on specific parts of the input at each time 
timestep. 
u(k) = UnimodalAtt({ut}

T
t=1, m(k−1)

u ),  
where m(k−1)

u is a memory vector, t is time step, and k is layer number. 
 
The architecture of each layer of the network is as follows: 
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The above network is replicated for the other mode and trained parallely. After each layer, the 
two context vectors outputted by the layers are used to find the similarity: 
s(k) = v (k)⊙ u (k)  



After performing K(here K=2) steps of the dual attention and memory update, the final similarity 
S between the given vocal vector and sentence is calculated as: 
S = ∑k=0

K s(k)  
 
The loss function for this network is a bidirectional max-margin ranking loss. To this end, we 
sample an additional negative vocal vector v − and negative verbal vector u − for each correct 
pair of vocal vector and verbal vector (v, u), to construct two negative pairs (v −, u) and (v, u −). 
Then, the loss function is evaluated as:  
L = ∑ (v,u) ma(0, m − S(v, u) + S(v −, u)) + max(0, m − S(v, u) + S(v, u −)) 
where m is a margin constraint(here initialised to 100).  
By minimizing this function, the network is trained to focus on the common semantics that only 
appears in correct text-vocal pairs. 
 
Stage of Implementation and Challenge 
All parts of this network except one have been tested on random initial values. The remaining 
one is the max-margin loss function, which, since we are defining on our own rather than using 
inbuilt loss functions, gives a technical error in the pytorch framework. This has to be ironed out.  
 

Challenges 
1. Pytorch framework gives an error due to manual specification and calculation of loss 

function in attention network, as explained above. We plan to debug the code to remove 
this. 

2. We still have to figure out how to factor in similarity of text and vocal in the larger 
framework of multimodal learning. For this, the attention net will have to be properly 
linked with the LSTM at the end.  

3. The script includes verbal descriptions of feelings and actions of the speaker apart from 
what they actually speak. This will have to be weeded out lest they interfere with training 

4. After designing the hardware in CAD, Luka figured that we had not previously 
considered how heavy the camera actually is, due to which we will have to shift to 
heavire and sturdier motors and links than previously planned. After finalising part 
models and specifications, coherent with design and mechanics, we will place the order.  

 

Scope of Improvement 
1. Currently, the wordembed.py implementation ignores words not found in vocabulary. An 

improvement can be achieved if we associate a small prior to these words. The details of 
how to do it have to be figured out. However, this may entail extensive post-training.  

 

Future Plans 
1. Linking and training of dual attention networks 
2. Implementation of tri-modal network with above attention models incorporated. 
3. Drawing conclusions from training of bi-modal network  
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Codes 
Attention.py 
#this will have text processing, a bi-LSTM for text representation 
import torch.nn as nn 
from torch.autograd import Variable 
import torch 
import torchvision.models as models 
 
#hyperparameters 
u_verbal_size=1280 
u_vocal_size=1280 
 
 
class verbalattention(nn.Module): 
    def __init__(self,u_verbal_size): 
        super(verbalattention, self).__init__()  
        self.Wu = nn.Linear(in_features=u_verbal_size, out_features=u_verbal_size)#512 is the 
number of verbal vectors which is input size 
        self.Wum = nn.Linear(in_features=u_verbal_size, out_features=u_verbal_size) #1792 is 
the size of concatenated 
        self.Wuh = nn.Linear(in_features=u_verbal_size, out_features=u_verbal_size)  
        self.memory=Variable(torch.zeros(u_verbal_size)) 
  
 
    def forward(self, context):  
        self.u=Variable(torch.zeros(u_verbal_size)) 
        x1=torch.tanh(self.Wu(context)) 
        x2=torch.tanh(self.Wum(self.memory)) 
        hut=Variable(torch.zeros(u_verbal_size)) 
        hut=torch.addcmul(hut,x1,x2) 
        m=self.Wuh(hut) 
        m=m.view(1,m.size(0))  
        t=nn.Softmax() 
        m=t(m) 
        aut=m.view(-1) 
        self.u = torch.addcmul(self.u, 1.0,aut, context)  
        return self.u 
 
    def memory_update(context): 
        self.memory+=context 
 
 



class vocalattention(nn.Module): 
    def __init__(self, u_vocal_size): 
        super(vocalattention, self).__init__()  
        self.Wu = nn.Linear(in_features=u_vocal_size, out_features=u_vocal_size)#512 is the 
number of verbal vectors which is input size 
        self.Wum = nn.Linear(in_features=u_vocal_size, out_features=u_vocal_size) #1792 is the 
size of concatenated 
        self.Wuh = nn.Linear(in_features=u_vocal_size, out_features=u_vocal_size)  
 
    def forward(self, context): 
        self.memory=Variable(torch.zeros(u_vocal_size)) 
        self.u=Variable(torch.zeros(u_vocal_size)) 
        x1=torch.tanh(self.Wu(context)) 
        x2=torch.tanh(self.Wum(self.memory)) 
        hut=Variable(torch.zeros(u_vocal_size)) 
        hut=torch.addcmul(hut,x1,x2) 
        m=self.Wuh(hut) 
        m=m.view(1,m.size(0))  
        t=nn.Softmax() 
        m=t(m) 
        aut=m.view(-1) 
        self.u = torch.addcmul(self.u, 1.0,aut, context)  
        return self.u 
 
    def memory_update(context): 
        self.memory+=context 
 
def calcloss(S,margin): 
    loss=(2*torch.max(Variable(torch.zeros(u_vocal_size)),margin-S)) 
    print(loss) 
    return loss 
 
def attentionnet(context_verbal, context_vocal):  
    S=Variable(torch.zeros(u_vocal_size)) 
 
    output_verb = verbAtt1(context_verbal)  
    output_voc= vocAtt1(context_vocal)  
    S = torch.addcmul(S,output_voc, output_verb)  
  
    output_verb = verbAtt2(output_verb)  
    output_voc= vocAtt2(output_voc) 
    S = torch.addcmul(S,output_voc, output_verb) 
  



    return(S) 
 
 
context_vocal = Variable(torch.randn(1280)) #currently size 1280 
context_verbal = Variable(torch.randn(1280)) #currently size 512 
margin=Variable(torch.FloatTensor([100])) 
verbAtt1 = verbalattention(u_verbal_size) 
vocAtt1 = vocalattention(u_vocal_size)  
verbAtt2 = verbalattention(u_verbal_size) 
vocAtt2 = vocalattention(u_vocal_size)  
params = list(verbAtt1.parameters()) + list(vocAtt1.parameters())+list(verbAtt2.parameters()) 
+list(vocAtt2.parameters()) 
optimizer = torch.optim.Adam(params, 0.01) 
` 
 
for epoch in range(10000): 
    print('Epoch [%d]' 
          % (epoch+1)) 
    verbAtt1.zero_grad() 
    verbAtt2.zero_grad() 
    vocAtt1.zero_grad() 
    vocAtt2.zero_grad() 
 
    S=attentionnet(context_verbal, context_vocal) 
    #loss=calcloss(S,margin) 
    loss= 2*torch.max(Variable(torch.zeros(u_vocal_size)),margin-S) 
 
    loss.backward() 
    optimizer.step()  
 
    print('Epoch [%d], Loss: %.4f, Perplexity: %5.4f' 
          % (epoch, loss.data[0], np.exp(loss.data[0]))) 
 
Bilstm.py 
#this will have text processing, a bi-LSTM for text represenation 
import torch.nn as nn 
import torch.nn.functional as F 
 
class TextNet(nn.Module): 
    def __init__(self, batch_size): 
        super(TextNet, self).__init__() 
        self.bilstm=nn.LSTM(input_size=10, hidden_size=20, num_layers=2, bidirectional=true) 
        h0 = Variable(torch.randn(2, 3, 20)) 



        c0 = Variable(torch.randn(2, 3, 20)) 
  
 
    def forward(self, textinput): 
 output,hn=F.relu(self.bilstm(textinput, (self.h0,self.c0))) 
        print(output) 
        #x = x.view(1280, -1) 
        return output 
 
input = Variable(torch.randn(5, 3, 10)) 
Textnet.forward(input) 
 
 
Wordembed.py 
 
import gensim 
import nltk 
from nltk.tokenize import RegexpTokenizer 
from nltk.corpus import stopwords 
import re 
#nltk.download('stopwords') #run once 
#nltk.download('punkt') #run this once on system to download dependency 
 
# Load Google's pre-trained Word2Vec model. 
w2v_model = 
gensim.models.KeyedVectors.load_word2vec_format('./GoogleNews-vectors-negative300.bin', 
binary=True) 
tokenizer = RegexpTokenizer(r'\w+') 
 
stop_words = set(stopwords.words('english')) 
 
 
 
def wordembed(sentence): 

sentence = re.sub(r'\S*\d\S*', '', sentence).strip() #remove numbers or words containing 
numbers 

sentence = re.sub(r'\(\S*\)','', sentence) #removes things within parenthesis 
sentence = re.sub(r'[^A-Za-z ]', '', sentence)#removes non alphabet characters 
sentence = re.sub(r' +',' ',sentence) # removes multiple spaces 
print(sentence) 
tokens = tokenizer.tokenize(sentence)  
filtered_tokens = [w for w in tokens if not w in stop_words and w in 

w2v_model.wv.vocab]#remove stop words 



print(filtered_tokens) 
return(w2v_model.wv[filtered_tokens]) 

 
 
 
sentence='Angad and Yoga are looking at our project (So excited! 999)' 
vectors=wordembed(sentence) 
print(vectors) 
 
 
 


