INDIVIDUAL LAB REPORT 4
Progress Review
MRSD Project

Name: Keerthana P G
Andrew ID: kgopalak

Team D

10th November 2017

Teamwork

Ritwik: Integrated parts of the neural network and began training

Luka: Made changes to text and speech processing, printed CAD models for hardware
assembly

Keerthana: Wrote bidirectional LSTM for text encoding, designed the PCB board and
programmed the camera tracker

Luxing: Proposed the initial design of PCB

Individual Responsibility

| was responsible for programming the bidirectional LSTM for text encoding. | also designed the
PCB layout from scratch, and implemented face detection and tracking on web camera.

Bidirectional-LSTM for Text Encoding

For text processing, we had decided to use a bidirectional LSTM as detailed in [2]
Given word embedding of T input words {w,, - - -, w; }, the vectors are fed into the bi-LSTM.

h (), = LSTM(f) (x, h (f) y)

h (b) = LSTM(b) (x,, h (b)),

where h (f), and h (b),represent the hidden states at time t from the forward and backward
LSTMs, respectively.

u, u; Uy Uy
Text
feature
vectors
LETM LSTM 5o e LS T LETM g
ED- =0 - En-E
— s —{s
Word
embeddings
what color "o umbrella ?

Fig1: Bidirectional LSTM for text encoding. Source:[1]
Then we add the two hidden states at each time step
u,=h (f),+ h (b),

To construct a set of feature vectors {u,, - - -, u; } where u, encodes the semantics of the t-th
word in the context of the entire sentence. These context vectors are then passed to the dual
attention network.

Stage of Implementation

Currently, we’ve written the layers and the training function, it runs smoothly on random input.
However, we have not integrated this or the attention network in the entire hybrid model as
prediction involving text modality is not an FVE requirement.

PCB Design

It was Luxing’s responsibility to design the PCB layout for our team, however he was not
present that day and the submission was due the next day at 7 am. So, | took the initiative to get
it done along with Ritwik.

After looking at the design Luxing submitted for Milestone 2, we figured that he had not
considered end requirements and overvoltage/reverse voltage protection. So, we decided to
start from scratch. We began by estimating the mass of the camera(upperbound 300g) and the
moment of inertia of the aluminium extrusions about the central axis.

.‘/
4

>,

[

Fig 2: Alumium extrusions|[2]
Thecross section has dimensions of 25*25 mm, and aluminium has a density of 2700kg/m®. The
moment of inertia about central axis, coming out of cross section was approximated to be
22147.75*10mm*. After adding the weight of camera and offsets for upper estimate of off-axis
moments, we concluded that to move the equipment at an angular velocity of at least 0.1 rad/s,
we required a torque of at least 0.1Nm(since torque = moment of inertia about axis * angular
velocity). Hence we decided to go ahead with the mercury SM-42BYG011-25 that has a torque
rating of 0.23Nm. This motor goes well with the A4988 motor driver chip with a current rating of
1A. These considerations and parameters became the design fundamentals of the PCB. We
used a zener diode for overvoltage protection, a schottky diode for reverse voltage protection
and a fuse wire of 1.5A for overcurrent protection.

Once the PCB schematic was designed, we generated the board, arranged the labels,
calculated an ideal trace width for our current requirements(32mil) and routed the circuit. We
paid heed to the feedback we received for Milestone 2 and tried our best to address them.

Further, we generated the manufacturing files and the free-FDM links as prescribed in the
submission guidelines.

F1 BAS4U
CZI_I_I' 'N'
i L1 5 ot [aRE z_L_
100uF b
— EN VMOT -
— mMs1 awom |—— | b
— MS2 2B = STEPPER1-1
—— Ms3 2A = STEPPER1-2
| RST 1B = STEPPER1-3
SCP 1A = STEPPER1-4
CONTROLLER1-2 =——+HEB+——{ STEP olo
CONTROLLER1-I = = DIR GND
0
F2 BAS40
T Je ol
4988 [CITEA D2
™~
100uF
— EN VMOT |
— mMs1 GNDM
— mMs2 2B = STEPPER2-1
— Ms3 2A = STEPPER2-2
RST 1B = STEPPER2-3
(N g 1A = STEPPER2-4
CONTROLLER2-2 =——+ED2——{ STEP vee
CONTROLLER2-I" e——Ff>——— DIR GND 2 =]
WY —— >
1
GND

Fig 2: PCB Schematic

POWER

—
o
i
o
o
o
=
o

Fig 3: PCB Board Layout

Stage of Implementation
Complete

Face Detection and Tracking

For FVE, one of our requirements is a 1-DOF face tracking mechanism. To get this ready, we
wrote a simple face detection function using dlib and openCV, and a newly bought webcam. We
used the dlib face detectors(Histogram of Oriented Gradients algorithm[3]) as it was shown to
perform better than Haar Cascades of OpenCV(Viola-Jones algorithm)[4], the latter yielding
several false positives.

After detecting faces, we calculate the centroid of the face and output this relative to the position
of the centroid of the frame. This relative position will be fed as serial input to the Arduino. The
objective of the tracking algorithm is to move the camera in a direction along the vector joining
frame centroid and face centroid.

Stage of Implementation
This has to be integrated into the hardware after programming the stepper motor and Arduino.

Additional Responsibility

In addition, | inspected the training dataset to view consistency of target ratings and raters
across target dimensions and relayed the findings to Luka. We found that a large part of the
dataset doesn’t have intensity ratings. So we decided to drop that dimension instead of cutting
down on training data. Secondly, we found that number of raters varied across the dataset, and
due to lack of training data, we decided to include any data sample that has at least one rater
for each output dimension.

Challenges

1. The implementation of face detector works well in good lighting, but performance falls
when lighting is dimmer. Also, when the subject is farther>2.5m, face is not detected.

2. Team management has hit new lows. One of our team members hasn’t showed up for
more than a week and half and has been hostile too. We are still figuring out on how to
deal with the situation.

Future Plans

1. We hope to have completed the robot from a hardware assembly standpoint.

2. We also hope to have gotten the stepper to rotate the camera based on where the
human is in the scene.

3. We hope to have done a large-scale training operation and began fine-tuning the
hyper-parameters in order to improve our training accuracy.

References

1. Nam H, Ha JW, Kim j, “Dual Attention Networks for Multimodal Reasoning and
Matching”, arXiv:1611.00471, https://arxiv.org/abs/1611.00471

2. https://www.ebay.com/itm/80-20-Inc-10-Series-1-x-1-Aluminum-Extrusion-Part-1010-x-6
0-Long-N-/220776275460

3. https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-
with-deep-learning-c3cffc121d78

4. https://news.ycombinator.com/item?id=14435569

https://arxiv.org/abs/1611.00471
https://www.ebay.com/itm/80-20-Inc-10-Series-1-x-1-Aluminum-Extrusion-Part-1010-x-60-Long-N-/220776275460
https://www.ebay.com/itm/80-20-Inc-10-Series-1-x-1-Aluminum-Extrusion-Part-1010-x-60-Long-N-/220776275460
https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78
https://medium.com/@ageitgey/machine-learning-is-fun-part-4-modern-face-recognition-with-deep-learning-c3cffc121d78
https://news.ycombinator.com/item?id=14435569

Codes

facedet.py
#our camera currently is 1280*720 p

import cv2
import dlib
import serial
detector = dlib.get_frontal_face_detector()
def show_webcam(mirror=False):
cam = cv2.VideoCapture(1)

while True:
ret_val, img = cam.read()
if mirror:
img = cv2.flip(img, 1)
try:

dets = detector(img)
#print("Number of faces detected: {}".format(len(dets)))

for i, d in enumerate(dets):
#print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format(
i, d.left(), d.top(), d.right(), d.bottom()))
cv2.rectangle(img, (d.left(), d.top()), (d.right(), d.bottom()), (255,0,0), 2)
centroid=((d.left()+d.right())/2, (d.top()+ d.bottom())/2)
val=centroid[0]-320
print((centroid[0]-320))
#the frame seems to have 620 horizontal pixels
#the val tells you how many pixels from the centre he centroid of face is ocated.
#-ve means image centroid is at the right f face centroid
#+ve means viceversa
#magnitude of val indicates how shifted it is

cv2.imshow('my webcam', img)
if cv2.waitKey(1) == 27:
break # esc to quit
except:
continue
cv2.destroyAllWindows()

def main():
show_webcam(mirror=True)

if _name__==' main__"

main()

