
	
	
	
	
	
	
	
	
	
	
	
	
	

Sensors	and	Motors	Lab	
Individual	Lab	Report	#1	

	
	

Luka	Eerens	
	
	

Team	D:	Deeply	Emotional	
	
	

Teammates:		
Luxing	Jiang,	Keerthana	P	G,	Ritwik	Das	

	
	

October	13th	2017	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

2	

1.	Individual	Progress:	
	
My	primary	role	was	to	interface	the	ultrasonic	range	finder	with	the	Arduino	
microcontroller	and	get	it	to	output	a	stable	distance	readout	and	then	drive	the	
servo.	My	second	role	was	to	integrate	the	hardware,	put	together	the	motor	
driver,	and	assemble	and	connect	all	of	the	components	together.		
	
	
2.	Components	
	
2.	1	Ultrasonic	Range	Finder:	
	
My	task	was	to	interface	the	Ultrasonic	range	finder	with	the	Arduino.	This	
sensor	was	the	LV-MaxSonnar	EZ	MB1010.		I	looked	at	the	specification	sheet	for	
this	sensor	and	found	that	just	like	pretty	much	every	other	ultrasound	sensor	I	
have	used,	that	it	was	low	power	enough	to	be	directly	powered	by	the	Arduino	
without	the	need	for	auxiliary	power	cables.		
	
There	are	2	main	ways	of	connecting	the	ultrasonic	range	finders,	the	first	option	
is	to	read	the	analog	pin	the	other	is	to	read	the	PW	(pulse	width)	pin.	I	tested	
both	approaches	and	found	that	sampling	from	the	PW	pin	yielded	a	more	stable	
reading	of	the	distance	whereas	analog	reading	seemed	to	have	more	noise.		
	

	
Figure	1:	PWM	VS	Analog	Distance	Readouts	from	Ultrasound	

So	I	connected	the	Arduino	to	the	Ultrasonic	range	finder	by	connecting	the	PW	
pin	of	the	ultrasound	with	PWM	pin	9	of	the	Arduino.	The	code	for	operating	this	
ultrasonic	sensor	on	the	Arduino	was	available	online	and	I	modified	it	to	reflect	
our	needs.	It	employed	a	scaled	down,	selective	median	filter	that	works	just	like	
a	median	filter	but	only	adds	values	to	the	list	if	they	are	very	close	in	value	to	
the	previous	correct	determined	distance	from	the	median	value	in	the	previous	
main	code	loop.	This	very	close	value	is	determined	by	an	integer	threshold	
value	called	ultraSonicPhi.	This	value	was	defined	in	the	code	by	experimenting	
with	different	values	and	observing	how	well	they	perform.	This	is	described	in	
the	challenges	section	later.	

0	
0.1	
0.2	
0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	

0	 10	 20	 30	 40	 50	 60	 70	 80	

D
is
ta
n
ce
	R
ea
d
in
g	
(m
)	

TImestep	Units	

Analog	

PW	

3	

2.	2	Hardware	Integration:	
	
The	first	step	involved	Soldering	all	of	the	components	for	the	motor	driver.	This	
was	done,	with	the	final	results	displayed	below:	

The	next	step	involved	planning	the	layout	of	the	motors	and	servos	on	our	
wooden	plank,	drilling	the	holes	in	the	plank	in	order	to	wrap	plastic	fasteners	
around	them.	I	did	this	part	together	with	Luxing.		
	

	
Figure	4:Breadboard	with	sensors	and	motors	

Figure	2:	Front	View	of	Finished	Motor	Driver	 Figure	3:	Rear	View	of	Finished	Motor	Driver	

4	

3.	Challenges:	
	
3.	1	Ultrasonic	Range	Finder:	
	
Drawbacks	of	noise	filtering	for	this	are	that	if	you	are	coming	in	very	fast,	then,	
you	will	get	quite	a	big	variation	in	echo	values.		
	
	
As	mentioned	earlier		
	
The	biggest	challenge	with	the	ultrasonic	range	finder	is	that	it	was	intrinsically	
noisy	and	was	quite	stubborn	in	its	performance.	In	the	case	of	controlling	a	
servo,	the	random	extreme	fluctuations	in	ultrasound	readings	became	
magnified	by	the	sudden	and	occasional	noisy	servo	rotation	in	the	opposite	
direction	of	where	it	was	meant	to	be.		
	
I	decided	to	address	this	firstly	using	sample	median	filters,	which	improved	the	
accuracy	of	the	readings	by	ignoring	outliers	for	each	measurement	sample.	
Several	different	sample	sizes	were	considered	and	it	was	found	that	having	
smaller	sample	sizes	lead	to	a	more	fluid	motion	of	the	connected	servo	(because	
of	the	reduced	latency)	but	these	smaller	sample	sizes	were	often	not	able	to	
have	a	median	that	was	isolated	away	from	the	outliers	after	sorting	the	sample	
size.		
	
So	I	tried	to	bring	the	best	of	both	worlds	by	having	a	small	sample	size	paired	
with	a	filter	that	only	let	numbers	be	appended	to	this	sample	list	if	they	were	
not	that	much	smaller	or	greater	than	the	previous	correct	median	computation	
of	the	previous	main	loop.		
	
This	filter	was	just	an	integer	threshold	called	ultraSonicPhi	and	various	
difference	thresholds	were	experimented	on.	It	was	found	that	the	value	of	500	
was	seemed	to	yield	curves,	which	blended	smoothness	with	frequency	of	
datapoints	the	best.	Figure	5	shows	the	results	of	this	test.	
	
The	problem	with	this	algorithm	is	that	it	only	adds	values	to	the	list	if	they	differ	
by	only	so	much	to	a	previous	accepted	median	value	for	sample	size,	but	that	
median	value	may	have	been	on	the	low	end	of	acceptable	and	so	every	other	
measurement	thereafter	will	be	ignored	because	this	threshold	difference	will	
not	be	enough..		
	
	
	
	
	
	
	
	
	
	

5	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure	5:	Distance	Measurements	for	recursive	hand	waving	filtered	by	different	UltraSonicPhi	Values	

6	

3.	2	Hardware	Integration:	
	
I	made	some	careless	mistakes	that	were	time	consuming	to	make	right	in	
regards	to	soldering	together	the	motor	driver.	This	included	soldering	the	
capacitor	on	the	wrong	way	and	the	laborious	process	that	was	needed	to	slowly	
pull	the	capacitor	out	when	residual	solder	held	the	pins	in	place.	This	procedure	
took	about	20	minutes	to	do	but	would	have	taken	longer	had	it	not	been	for	
Luxing	arriving	to	the	lab	to	provide	a	helping	hand.		
	
Another	little	challenge	with	the	hardware	integration	was	figuring	out	how	to	
Frankenstein	together	a	circuit	from	all	of	the	individual	ones	that	our	team	used	
to	develop	their	own	sensor-actuator	subsystem.	Every	student	instinctively	laid	
out	their	circuit	differently	and	so	just	using	the	same	wires,	and	connection	
points	was	not	enough	as	the	servos	and	DC	motors	were	already	fixed	in	place,	
and	sometimes	the	wires	currently	used	were	not	long	enough	to	reach	their	set-
up	location.		
	
Nonetheless	this	challenge	in	itself	wasn’t	that	complicated	as	each	team	mate	
set	up	their	own	hardware	to	test	their	subsystem	and	by	looking	at	their	
subsystems,	I	was	able	to	integrate	it	into	the	fabric	of	the	circuit.	Even	though	
debugging	of	the	sensors	and	motors	was	still	taking	place	close	to	the	deadline,	
the	hardware	itself	was	integrated	on	the	circuit	board,	which	we	all	cluttered	
around.	
	
	
	
4.	TeamWork	
	
We	are	a	4-person	team	and	therefore	are	only	using	3	sensors	in	this	lab	to	
drive	our	motors	and	servos.	The	devices	that	we	have	decided	to	use	are:	

• Ultrasonic	range	finder	
• Ambient	Light	Sensor	
• Rotary	Encoder		

	
The	way	that	we	have	split	up	the	tasks	amongst	ourselves	is:	

• Luka	Eerens:					Ultrasonic	Range	Finder,	Hardware	Integration,	Servo	
• Luxing	Jiang:					Ambient	Light	Sensor,	Stepper	Motor,	System	Integration	
• Keerthana	P	G:		Rotary	Encoder,	PID,	DC	Motor		
• Ritwik:		 			Graphical	User	Inteface	(GUI)	
	

Due	to	our	small	team,	large	workload	and	large	list	of	deliverables	outside	of	
this	lab,	we	decided	to	partition	the	tasks	early	on	and	factored	in	our	availability	
during	the	due	week.		
	
In	order	to	quickly	provide	our	codes	for	system	integration	we	decided	that	I	
would	set	up	our	hardware	quickly	and	develop	my	Ultrasonic	Range	Finder	
code	early	as	the	entire	upcoming	week	was	fully	booked	with	meetings,	
midterm	exams,	assignments,	and	start-up	deliverables.		

7	

We	did	not	work	in	close	proximity	to	each	other	because	of	our	unavailability	to	
each	other	during	the	week	so	ensured	that	good	code	readability	and	
manageability	was	done.	I	was	able	to	quickly	build	the	ultrasonic	sensor	and	
servo	control	and	passed	it	over	to	Ritwik	early	on	to	test	with	the	GUI.	It	worked	
like	a	charm	and	had	no	issues.	However	due	to	poor	coordination	this	left	
Keerthana	and	Luxing	stuck	with	the	DC	motor	and	Stepper	motor	close	to	the	
deadline	which	meant	there	wasn’t	much	time	left	to	debug	the	software	
integration.	
	
	
5.	Future	Plans	
	
Our	MRSD	capstone	project	is	software	heavy	(multimodal	emotion	recognition)	
and	features	almost	no	moving	parts.	The	only	mechanically	actuated	component	
of	our	project	is	the	instrument	cluster,	which	needs	to	be	directed	towards	the	
human.	The	development	of	this	subsystem	is	something	we	have	relegated	to	
the	spring	semester	as	we	consider	it	unrelated	to	the	task	of	multimodal	
emotion	recognition.	We	want	to	be	sure	that	we	have	algorithms	that	detect	
emotion	from	the	joint	use	of	visual,	acoustic	and	lexical	modalities	and	so	will	
focus	our	efforts	on	that	instead.		
	
This	subsystem	however	will	emulate	the	product	of	our	sponsor	by	being	
something	you	place	on	a	table-top,	which	essentially	has	2	degrees	of	freedom	
of	rotation.	The	camera	in	our	instrument	cluster	needs	to	be	able	to	track	a	
human	if	they	were	to	pace	around	the	table	and	therefore	would	need	a	servo	
aligned	with	the	Y-axis	(perpendicular	to	table	surface).	The	robot	would	also	
need	to	orient	its	camera	up	to	the	humans	face	if	they	are	close	by.	This	means	
having	a	second	servo	aligned	with	an	axis	perpendicular	to	the	first	to	allow	for	
upwards	and	downwards	tilt.		
	
As	far	as	moving	pieces	go,	we	will	have	something	that	looks	very	similar	to	a	2	
degree	of	freedom	gimbal.	Everything	else	will	be	the	instrument	cluster	and	
software.	

	
Figure	6:	2	Degree	Of	Freedom	Gimbal	

8	

Also	given	the	light	weight	of	our	instrument	cluster	(a	cheap	and	simple	camera	
such	as	a	PiCamera	or	Microsoft	Kinect	paired	with	a	lightweight	microphone),	
we	probably	do	not	see	the	need	for	any	motor	driver	or	relay	type	device.	The	
servos	that	we	are	looking	into	require	a	low	power	signal	from	the	Arduino	and	
are	fed	with	the	power	to	actually	execute	the	turns	from	either	a	battery	or	the	
mains.		
	
	
Progress	Review	Goals	
	
We	have	surveyed	the	landscape	for	datasets	and	have	gone	through	some	of	the	
formalities	associated	with	acquiring	them.	We	are	speaking	ofcourse	of	
multimodal	datasets,	and	the	ones	that	we	have	decided	to	focus	on	are	the	
SEMAINE	dataset,	IEMOCAP	dataset	and	Microsoft	MISC	dataset.		
	
In	our	literature	review,	we	have	found	a	great	number	of	research	papers	
dealing	only	with	bimodal	emotion	recognition	(voice	and	visual	modalities)	and	
we	will	look	into	building	the	code	for	atleast	one	of	these	papers	and	training	it	
for	the	immediate	future	(Next	2-3	weeks).		We	hope	to	have	implemented	it	by	
next	meeting,	and	if	not	than	atleast	a	good	portion	should	be	complete.		
	
So	we	are	in	the	near	term	only	focusing	on	bimodal	emotion	recognition	and	
will	slowly	incorporate	the	third	modalities	later	in	the	semester.	
.		
	
	
References:	
	
Figure	4:	Xeryon	Gimbal	found	on	this	link	
https://static.wixstatic.com/media/d9ce98_62281bcc95f64049aa9a41015a8a4
4e4~mv2_d_1625_1955_s_2.png/v1/fill/w_242,h_263,al_c,usm_0.66_1.00_0.01/
d9ce98_62281bcc95f64049aa9a41015a8a44e4~mv2_d_1625_1955_s_2.png	
	
Appendix	1.	Quiz	
1. Reading	a	datasheet.	Refer	to	the	ADXL335	accelerometer	datasheet	

(https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf)	to	
answer	the	below	questions.	
o What	is	the	sensor’s	range?	

Min:	6g		 (From:	-3g	<=	sensor	range	<=	+3g)	
Typ:	7.2g	 (From:	-3.6g	<=	sensor	range	<=	+3.6g)	
	

o What	is	the	sensor’s	dynamic	range?	
Min:	±3g			 	
Typ:	±3.6g			
	

o What	is	the	purpose	of	the	capacitor	CDC	on	the	LHS	of	the	functional	
block	diagram	on	p.	1?		
Decouple	accelerometer	from	power	supply	noise.		

9	

	
	
How	does	it	achieve	this?	
Capacitor	resists	sudden	voltage	changes	and	acts	as	local	energy	storage	
device.	
	

o Write	an	equation	for	the	sensor’s	transfer	function.	
!!"# = !! + !"#!$%$&$%' ∗ !""#$#%!&'()	

	

! = !!"# − 1.5
300
1000

= 3− 1.5
0.3 = 5!/!!	

	
o What	is	the	largest	expected	nonlinearity	error	in	g?	

!""#"!"!#$!%&'$() = 0.3% ∗ 7.2! = 0.216!	
	

o How	much	noise	do	you	expect	in	the	X-	and	Y-axis	sensor	signals	when	
the	sensor	is	excited	at	25	Hz?	

= 150 ∗ 25 = 750!	
o How	about	at	0	Hz?	If	you	can’t	get	this	from	the	datasheet,	how	would	

you	determine	it	experimentally?	
Measure	output	of	sensor	when	sensor	is	still	

	
2. Signal	conditioning	

o Filtering	
§ What	problem(s)	might	you	have	in	applying	a	moving	average?	

There	are	significant	challenges	with	finding	max	values	by	applying	a	
moving	average.	To	add,	all	sorts	of	response	samples	such	as	ones	
with	drastic	changes	or	oscillations	with	constant	amplitude		
disappear	when	applying	moving	average	filters.	One	should	thus	
think	carefully	about	the	nature	of	the	data	before	settling	on	this	
filter.		

§ What	problem(s)	might	you	have	in	applying	a	median	filter?	
Applying	a	median	filter	requires	you	to	sample	multiple	
measurements	before	passing	only	one	single	value	through.	This	
means	that	there	is	a	buildup	in	the	latency	that	squares	with	sample	
size	as	you	need	2	for	loops	to	iterate	through	the	values	in	order	to	
sort	them.	Incrementing	both	by	1	will	taka	a	lot	more	time	than	the	
previous	for	loop	sizes...	This	latency	also	means	that	you	run	the	risk	
of	losing	data,	and	if	you	were	to	drive	a	motor	or	a	servo	based	on	
this,	you	would	observe	sudden	stochastic	changes	in	torque	or	
position	even	if	the	sensor	was	exposed	to	something	that	changes	
very	gradually.	Another	challenge	includes	losing	data	especially	
peaks	in	the	signal	as	when	the	samples	around	them	are	sorted	the	
peak	will	never	be	the	median.		

10	

V2

	

V1

Vout

+Vs

-Vs

_

+

Rf Ri
	

	

o Opamps	
§ In	the	following	questions,	you	want	to	calibrate	a	linear	sensor	using	

the	circuit	in	Fig.	1	so	that	its	output	range	is	0	to	5V.	Identify	which	of	
V1	and	V2	will	be	the	input	voltage	and	which	the	reference	voltage,	
the	value	of	the	reference	voltage,	and	the	value	of	Rf/Ri	in	each	case.	
If	the	calibration	can’t	be	done	with	this	circuit,	explain	why.	
• Your	uncalibrated	sensor	has	a	range	of	-1.5	to	1.0V.	
• Your	uncalibrated	sensor	has	a	range	of	-2.5	to	2.5V.	

	
	
	
	
	
	
	
	
	
	
	
	

	
Fig.	1	Opamp	gain	and	offset	circuit	

	
For	uncalibrated	sensor	which	has	a	range	from	-1.5V	to	1.0V	

△ !!" = 1+ 1.5 = 2.5 	
△ !!"# = 2.5+ 2.5 = 5.0	

	

∴ △ !!"#△ !!"
= 5.0
2.5 = 2.0	
	

!! − !!
!!

= !!"# − !!
!!

	

!!"# = !! 1+ !!!!
− !!!!

!!	
	

∴ 1+ !!!!
= 2	

∴ !!!!
= 1	
	

!!"# = 2!! − !!	
	

If	!!"# = 0 = 2(−1.5)− !!	
∴ !! = −3	

If	!!"# = 5 = 2(1.0)− !!	
∴ !! = −3	

	

11	

∴ !!	is	response	voltage	such	that	
!!
!!
= 1,	!! = −3!,	!"# !!	is	input	voltage	

For	uncalibrated	sensor	which	has	a	range	from	-2.5V	to	2.5V	

!!"# = !! 1+ !!!!
− !!!!

!!	
Make	sure	!!"#	changes	with	!!"	so	substitute	!!"	into	the	1	in	the	expression	
above.	

∴ △ !!"#△ !!"
= 5.0
2.5+ 2.5 = 1.0	
	

∴	1+ !!
!!
= 1	

	

∴ !!!!
= 0	
	

∴△ !!"# = !! − !!	
	

If	!!"# = 0 = −2.5− !!	
∴ !! = −2.5!	

If	!!"# = 5 = 2.5− !!	
∴ !! = −2.5!	

	
However	in	this	scenario,	! !! ≠ 0	and	!! = 0	and	so	in	! = !",		! → ∞ 	so	
no	solution…	
	

3. Control	
o If	you	want	to	control	a	DC	motor	to	go	to	a	desired	position,	describe	

how	to	form	a	digital	input	for	each	of	the	PID	(Proportional,	Integral,	
Derivative)	terms.	
At	each	timestep	calculate	the	error	for	the	past,	present	and	future.	
Assign	a	singular	weight	to	each	error	(past	error,	present	error,	future	
error)	and	use	these	together	in	order	to	get	desired	output.	Here	is	an	
equation	for	PID:	

!"#$"# ! = !!! ! + !! ! ! !"
!

!
+ !!!

!" !
!" 	

Where:	
!!! ! 	=	current	error	
!! ! ! !"!

! 	=	All	past	errors	accumulated	

!!! !" !
!" 	=Change	in	error	(Can	be	used	to	predict	future	error)	

	
	

o If	the	system	you	want	to	control	is	sluggish,	which	PID	term(s)	will	you	
use	and	why?	

12	

!!	and	!! 	should	be	increased	because	they	determine	size	of	adjustment	
step.	
	

o After	applying	the	control	in	the	previous	question,	if	the	system	still	has	
significant	steady-state	error,	which	PID	term(s)	will	you	use	and	why?	
Increase	!! 	because	this	term	represents	all	past	errors	accumulated	and	
a	larger	!! 	means	a	larger	coefficient	to	all	these	errors,	which	could	help	
reduce	or	even	eliminate	this	steady	state	error.	
	

o After	applying	the	control	in	the	previous	question,	if	the	system	still	has	
overshoot,	which	PID	term(s)	will	you	apply	and	why?		
Increase	!! 	and	thereby	help	predict	future	error	to	make	the	output	
converge	with	the	correct	true	value	faster.		

	
	
	
	
Appendix	2:	Arduino	Code:	
	
#include	<Servo.h>	
	
Servo	servo;		//	create	servo	object	to	control	a	servo:	We	are	going	to	measure	
distance	through	pulse	width	modulation	
const	int	ultrasoundPin	=	9;	
const	int	servoPin	=	5;	
float	distVal;	
int	distTriggerVal;																														//	variable	that	is	read	by	ultrasound	pin	
int	distTriggerList[]	=	{0,0,0};													//	Contains	5	sensor	reading	values	to	feed	
into	noise	cancelling	function	
int	orderedList[]	=	{0,0,0};	
const	int	distListSize	=	3;	
int	pos	=	0;	
int	previousSonarValues[]=	{0};	
int	ultraSonicPhi	=	500;												//	This	is	the	magnitude	of	tolerable	difference	in	
time	it	takes	to	receive	
//	an	echo	at	each	timestep.	This	is	used	to	ignore	sudden	bursts	or	dips	in	echo	
receive	time	that	lie	within	acceptable	range	
	
	
	
void	setup()	{	
		servo.attach(servoPin);									//	attaches	the	servo	on	pin	9	to	the	servo	object	
		Serial.begin(9600);													//	Make	sure	baud	rates	are	identical	for	all	
subsystems	
		pinMode(ultrasoundPin,	INPUT);	
}	
	

13	

	
void	readSonar(){	
				
				for	(int	i	=	0;	i	<	distListSize;	i++){	
								distTriggerVal	=	pulseIn(ultrasoundPin,	HIGH);					//	These	values	are	given	
in	microseconds	
									
								//	If	the	distValue	is	not	an	outlier	
								if	(distTriggerVal	>	800	&&	distTriggerVal	<	2500){	
											
										//	If	this	is	the	first	timestep	
												if(previousSonarValues[0]	==	0){	
															
																//	quicker	to	append	these	values	directly	than	transform	them	each	
before	appending	
																distTriggerList[i]	=	distTriggerVal;	
																orderedList[i]	=	distTriggerVal;																			//	This	comes	in	handy	in	the	
order	function	
												}	
												//	Any	timestep	after	that	
												else{	
																//	If	it	is	a	gradual	change	and	not	a	sudden	one	(smaller	than	
ultraSonicPhi)	
																if	(abs(distTriggerList[i]	-	previousSonarValues[0])	<		ultraSonicPhi){	
																				distTriggerList[i]	=	distTriggerVal;	
																				orderedList[i]	=	distTriggerVal;			
																		}	
																//	Pretend	like	the	measurement	never	exhisted	
																else{i--;}	
														}	
								}	
									
								if	(distTriggerVal	<	800	||	distTriggerVal	>	2500){i--;}						//	Reset	i	iterator	
by	reversing	it	by	one	
						}	
			}	
	
	
void	order(){	
		//	Sort	the	list	of	signal	values	in	order	to	isolate	the	outliers	at	the	edges	of	the	
list	
			
		float	smallest	=	3000;								//	This	is	clearly	not	a	value	it	can	reach	
		int	smallestIndex	=	0;	
		for	(int	j	=	0;	j	<	distListSize;	j++){	
						for	(int	i	=	0;	i	<	distListSize;	i++){	
										if	(orderedList[i]	<	smallest){	
														smallest	=	orderedList[i];	
														smallestIndex	=	i;}	

14	

						}	
						distTriggerList[j]	=	smallest;	
						orderedList[smallestIndex]	=	4000;							//you	now	want	the	next	smallest	
value,	so	make	the	current	smallest	value	huge		
				}	
		}	
	
	
void	median(){	
				//	Find	the	average	of	the	3	centermost	values	
					
				//distVal	=	float(distTriggerList[2]	+	distTriggerList[3]	+	
distTriggerList[4])/float(3);	
				distVal	=	distTriggerList[1];	
				previousSonarValues[0]	=	distVal;	
					
				//	Now	convert	this	microsecond	value	into	a	distance	value	
				distVal	=	float(distVal)/1000000;											//	first	so	convert	to	sec	
				distVal	=	distVal	*	343;																				//	next	convert	to	dist	(speed	of	sound	=	
343m/s)	
		}	
	
	
//	This	function	was	obtained	from:	
https://electronics.stackexchange.com/questions/83458/best-way-to-map-ints-
to-float-in-arduino	
float	mapfloat(float	x,	float	in_min,	float	in_max,	float	out_min,	float	out_max){	
		return	(x	-	in_min)	*	(out_max	-	out_min)	/	(in_max	-	in_min)	+	out_min;	
}	
	
//	2	interesting	things	the	ultrasonic	range	finder	detects	stuff	by	reflecting	echo	
on	table	surface	
//	it	also	occasionally	detects	crazy	values	ESPECIALLY	WHEN	going	from	away	
to	towards	the	ultrasound		
void	loop()	{	
	
				readSonar();	
				order();											
				median();		
				Serial.println(distVal);	
				distVal	=	mapfloat(distVal,	0.28,	0.85,	0.0,	202.5);	
				distVal	=	int(distVal);	
				//Serial.println(distVal);	
				//Serial.println();	
				servo.write(distVal);	
	
		
				delay(15);		
		}	

