

Critical Design Review

Team E: Beyond Sight

Environmental Sensing Infrastructure for

Autonomous Driving

Team Members:

Rohit Murthy

Vivek GR

Oliver Krengel

Chien Chih Ho

Peng Sheng Guo

December 14, 2017

Abstract

This report discusses the progress made on the project to develop an environmental sensing

infrastructure to enable autonomous vehicles to navigate safely through urban environments. The

discussions focus on two major portions of a project: the technical details and the project

management methodologies that have enabled us to make good progress in this fall semester. We

first detail the motivation for the project and the specific use case against which we will validate

the project requirements. We then explain the requirements that drive the design and development

of the system. The different components of this system are outlined in the functional and

cyberphysical architectures in the next section. In this fall semester we have been able to make

significant inroads in the detection, tracking, prediction and electrical subsystems which is detailed

in Section 6.3. In order to meet the requirements for our fall validation, we also performed rigorous

testing which is documented in this section as well. The project management plans are discussed

in Section 7 with focus on the work to be completed in the spring semester in order to meet the

requirements for the spring validation experiments. This also includes the important risks that we

have been tracking and will track in the future as well. Conclusive remarks on our achievements

and key goals for spring are outlined in the last section of this report.

Contents

1. Project Description.. 1

2. Use Case.. 2

3. System-Level Requirements ... 3
3.1 Functional Requirements .. 3
3.2 Performance Requirements ... 3
3.3 Non-Functional Requirements .. 4

4. Functional Architecture .. 5

5. Cyberphysical Architecture .. 6

6. Current System Status ... 8
6.1 Fall System Requirements .. 8
6.2 Overall System Depiction ... 9
6.3 Subsystem descriptions/depictions ... 9

6.3.1 Vehicle ... 9
6.3.2 Pedestrian Detection .. 11
6.3.3 Pedestrian Tracking ... 13
6.3.4 Trajectory Prediction ... 13
6.3.5 Electrical Subsystem .. 14

6.4 FVE performance evaluation .. 15
6.5 Strengths and Weaknesses .. 16

7. Project management .. 17
7.1 Work Breakdown Structure .. 17
7.2 Schedule .. 17
7.3 Test plan .. 18

7.3.1 Progress Review Milestones .. 18
7.3.2 Spring Validation Experiment ... 19

7.4 Budget status ... 20
7.5 Risk management .. 21

8. Conclusions ... 22
8.1 Lessons learned ... 22
8.2 Key spring activities ... 23

9. References ... 23

1

1. Project Description

Every year in the United States, approximately 2.5 million accidents are reported at

intersections, as reported by the Federal Highway Commission [1]. The same agency reports that

intersection accidents account for 40% of all crashes. Worse, 50% of all serious collisions and

20% of all fatal collisions occur at intersections.

 A study conducted by the National Highway Traffic Safety Administration found

“obstructed view” as a primary reason for intersection accidents across drivers of all ages and

genders [2]. This will come as no surprise to any driver, though. Intersections pose difficulties

that drivers do not experience on 2 lane roads, such as:

 Timed signals to monitor

 Cars from the side turning in front of driver

 Cars from in front turning in front of driver

 Cars stopping in front of driver to turn

 Pedestrians crossing in front of driver

 Pedestrians crossing beside driver

With all these reasons accounted for, it is no wonder how many accidents occur at

intersections. In many cases, drivers simply have too many obstacles to account for at any given

time. The proliferation of self-driving cars may assist vehicles at intersections in accounting for

many obstacles simultaneously, but the problem of occluded viewpoints remains. With only car-

mounted sensors, vehicles driving through intersections may not be able to detect obstacles such

as crossing vehicles and pedestrians if their view is occluded by larger vehicles. The use of

information gathered on sensors outside the vehicle will therefore be necessary to solve the

occlusion problem.

To solve the occlusion problem, we are proposing an infrastructure system at

intersections developed around live 3D video capture. This system will be able to detect moving

objects and predict their movements. Furthermore, the system will be designed to interface with

vehicles approaching and passing through intersections, so that it can communicate with these

vehicles. By utilizing path prediction and communication, the system will be able to detect

would-be collisions in advance and alert vehicles, thus preventing collisions.

This project will develop a LiDAR/Camera-based system which can detect and track

pedestrians and communicate with autonomous vehicles. The system has been tested on a

controlled intersection with a known occluded space and is now being generalized to a four-way

intersection. Our hope is that the technology we develop can be put to use in the future at all

intersections.

2

2. Use Case
Andy is driving to work along his normal route, down Forbes avenue through

Oakland. He is attending to the road but he is in autopilot, it is early in the morning and he has

made this commute hundreds of times. He turns onto Bellefield then makes a left on Fifth

Avenue. His car is alone in the left lane clear to the intersection at Bouquet, where the light is

red. He begins to slow down 100 yards away when the light turns green.

Andy accelerates to pass the bus (shown below in orange) when a man steps out in front

of the bus, 15 feet in front of his car. The car comes to an immediate halt as the pedestrian

freezes in the intersection. Andy’s car is 2 feet from the man, but his foot didn’t reach the brake

until the car was 5 feet away. As he breathes a sigh of relief, Andy wonders why his car

stopped…

5 seconds earlier, when Andy was approaching the intersection, his car’s computer had

made a wireless connection with a LIDAR system monitoring the Fifth Avenue-Bouquet

intersection. The system continuously detects vehicles, pedestrians, and other moving objects in

the vicinity of the intersection. This system is the blue puck with red bar displayed at the top of

the schematic.

2 seconds earlier, a man had jumped out of the bus and made a quick turn in front, hoping

to cross the street before the light turned. The LIDAR system had tracked the man’s movements

and predicted that his path would move in front of Andy’s car. The system instantaneously sent

a signal to his car’s computer, alerting its obstacle avoidance system to the pedestrian about to be

in front of the car.

4 tenths of a second earlier, Andy’s car had automatically braked, 1 tenth of a second

before Andy had a view of the man and 3 tenths of a second before he could have applied the

brakes. Thanks to the LIDAR system that monitors the intersection, Andy’s car avoided an

accident that neither he nor his car would have been able to prevent on their own. The entire

situation is depicted in a simplified form in figure 1 below.

Figure 1. System graphical representation.

3

3. System-Level Requirements

The System level requirements are driven by our objective of making intersections safe. We do

this by preventing collisions between vehicles and pedestrians.

The system-level requirements are categorized as:

a) Functional (F)

b) Performance (P)

c) Non-functional (NF).

Where [M.] denotes the requirement is mandatory.

3.1 Functional Requirements

Table 1. Functional Requirements

ID Title

INFRASTRUCTURE:

M.F.1 Detect pedestrian

M.F.2 Track pedestrian

M.F.3 Predict trajectories of pedestrians

M.F.4 Publish trajectories to autonomous vehicles

VEHICLE:

M.F.5 Subscribe to pedestrian trajectories

M.F.6 Avoid collisions with pedestrians before they enter the vehicles’ field of view

3.2 Performance Requirements

Table 2. Performance Requirements

ID Title Description

INFRASTRUCTURE:

M.P.1 Detection
Detect single pedestrian centroid with Euclidean distance error < 0.3m

M.P.2 Tracking
Track single pedestrian within 20m of the infrastructure

4

M.P.3 Prediction
Predict single pedestrian trajectory 1.2 seconds into the future with an average
error of 0.5m

M.P.4 Cycle
Time Time between first frame with a pedestrian to first published trajectory should be

less than 1 second.

VEHICLE:

M.P.5 Vehicle
Stop short of single pedestrian before he/she enters the field of view

3.3 Non-Functional Requirements

Table 3. Non-Functional Requirements

ID Title Description

M.N.1 Stability Shall be physically stable

M.N.2 Electrically Isolated Shall be isolated electrically

M.N.3 Maintainability Shall be easy to move and maintain

M.N.4 Testing Shall be safe for testing

M.N.5 Regulations Shall adhere to strict university and legal regulations

5

4. Functional Architecture

Figure 2. Functional Architecture

The Functional architecture for the project is visualized in the Figure 2 above. Our project

involves two major subsystems in order to realize our project successfully.

1. Infrastructure: The inputs to the system are pedestrians who are within the twenty-meter

range of our infrastructure. They will be detected by our detection module from image

sensors. Then the tracking module will track each of the pedestrians and pass this information

to the trajectory prediction module. After generating the future points of each pedestrian, the

information is broadcast to the vehicle.

2. Vehicle: The vehicle will receive the broadcasted trajectory information, which is used as an

input to the control module. In the meantime, car will localize itself with onboard sensors and

pre-stored global map. The motion planning module will take all map and localization

information to generate a feasible path. Control module will control the vehicle and avoid any

possible collisions with pedestrians. All the process described above including pedestrian

detection, prediction, localization and path planning is visualized in RViz.

6

5. Cyberphysical Architecture

Figure 3. Cyberphysical Architecture

The Cyberphysical architecture for the project is visualized in the Figure 3 above. There are two

modules in our system: infrastructure and vehicle.

1. Infrastructure: The “image data 1” and “image data 2” blocks from the Functional

Architecture become Lidar and Camera. These are mounted on the infrastructure. Data is

sent to the workstation (Titan X) through an ethernet cable. The workstation synchronizes

Lidar and RGB information, then compares and subtracts foreground points from the pre-

built background. After that, foreground points are clustered into groups and the centroids

of each group is calculated as a pedestrian’s position. However, if there are two targets

too close to each other, the system might mistakenly cluster two people into one group

with a single centroid. To avoid this, the system fuses the semantic information from the

RGB image with bounding boxes to correct the number of groups using single-shot

multi-box detector. After getting multiple target centroid coordinates, the information is

passed to the tracking system. The tracking system uses a Hungarian algorithm to track

the associated targets. Finally, the system predicts the trajectories of the tracked targets

using Social LSTM [5] and sends the trajectories to the vehicle via Wifi. All messages are

transmitted within a ROS environment.

7

2. Vehicle: The vehicle is embedded with Lidar, Jetson TX1 (embedded computer), VESC

(Vector Electronic Speed Controller), and servo motors. It localizes itself using an

Extended Kalman Filter given a map and laser range data. After the trajectory is passed to

the vehicle through the ROS protocol, the vehicle will stop if any of the predicted

pedestrians are within its path.

The algorithm flowchart is depicted below:

Figure 4: Algorithm Flowchart

8

6. Current System Status

6.1 Fall System Requirements

Table 4. Fall System Requirements

Test ID Description Requirement

INFRASTRUCTURE

Test 1
Detect single pedestrian centroid with Euclidean distance error < 0.3m

M.P.1

Test 2
Track single pedestrian within 20m of the infrastructure

M.P.2

Test 3
Predict single pedestrian trajectory 1.2 seconds into the future with an average error of

0.5m

M.P.3

Test 4
Time between first frame with a pedestrian to first published trajectory should be less

than 1 second.

M.P.4

VEHICLE

Test 5
Stop short of single pedestrian before he/she enters the field of view

M.P.5

9

6.2 Overall System Depiction

Figure 5: Current Overall System Status

6.3 Subsystem descriptions/depictions

6.3.1 Vehicle

 Our vehicle subsystem for the fall semester is a miniature autonomous vehicle built by

the D team last year [3][4]. We have also outfitted the vehicle with a thin wire “bumper” to

increase the scale in relation to humans. The vehicle is built with a chassis from a hobby RC car

and is controlled with an onboard Jetson TX1. The TX1 connects to a Teensy microcontroller

which commands the vector electronic speed controller (VESC) that controls the motors of the

vehicle. It also connects to a passive wireless receiver, Hokuyo LiDAR, USB hub, IMU, and

power distribution board (PDB). The PDB receives power from an 11.1V lithium polymer

battery and distributes it between the active components. The vehicle can be seen in Figure 6

below.

10

Figure 6. Vehicle subsystem

 The ROS visualization tools provide an excellent view of how the car’s subsystems work

together to produce a working system. The rqt_graph of the fully functional system can be seen

in Figure 7 below.

Figure 7. Vehicle rqt graph

The bottom left of this rqt_graph shows how the IMU and laser scanner feed into an

adaptive monte carlo localizer (AMCL), then into a an extended Kalman filter to provide state

estimation. This information is published as odometry information which is used by both the

trajectory server and trajectory client. The trajectory server sends commands through the

multiplexer to the Ackermann controller, which controls the motor and steering. Left out of that

description is the keyboard command, which feeds into the trajectory client. The command ‘a’

activates the ramp protocol, which moves the vehicle to a user-defined goal point. Specifically,

this references a .yaml file (bsilqr_params.yaml) which has a predefined goal location (along

with many other parameters). This planning method is executed by the trajectory client and

server, which utilize the ROS action library to steer the robot to the goal.

Missing from the above graph is the connection to our infrastructure. When working

together, the trajectory client subscribes to the “/predicted_points” topic which carries the

PoseArray message that contains pedestrian trajectory data. The trajectory client includes a node

that will stop if this pedestrian data is determined to be in the vehicle’s path.

 By connecting to a ROS core running on the vehicle’s TX1, we are able to view the

“odometry_filtered” and “scan” (from the Hokuyo) topics on the vehicle’s map. Since the

system came pre-built, we did not perform any modelling on the vehicle.

 The analysis came in a rigorous poring over of the ROS nodes when the vehicle was

active to determine how the subsystems worked together. Since our communication needed only

to interface with the trajectory client, contained within the “ilqr_loco” package, this package was

11

the primary area of focus. Toward the end of the semester, when we started interfacing with the

infrastructure more regularly, the ekf used for state estimation was analyzed as well.

 We performed extensive testing on the vehicle in order to perform our fall validation

experiment without failure. What you can see in Figure 8 below is the vehicle’s odometry with

respect its initial position (odom frame), the velodyne frame, and a human in its path.

Figure 8. Vehicle running in rviz

 The ability to visualize the vehicle was useful for the many iterations we performed

changing the map of our test environment, running the vehicle to its waypoint, and testing the

vehicle with live pedestrians. Primarily, this feature made it easy for us to determine where the

vehicle believed it was with respect to the environment and the LiDAR.

6.3.2 Pedestrian Detection

The detection module is for detecting pedestrians within a 20-meter range of the

infrastructure. The difference between detected pedestrian coordinates and the ground truth

should be within 0.3 m based on the FVE performance requirement.

The module is able to detect pedestrians using LiDAR point cloud data. By subtracting

the raw point data with pre-stored dense background, we are able to get all the foreground points

and divide them into different groups using Euclidean clustering method. Centroids of each point

group are then calculated as the centroid for each pedestrian.

The unit test for detection module is conducted by assigning human agent to 16 of the

pre-measured points. The errors are calculated as the Euclidean distance between the ground

truth and detected coordinate. All the testing data are shown below.

12

Table 5: Detection Performance Test

Point No. Point Coordinate (m) Detected Coordinate (m) Error (m)

1 2,1 2.00,1.00 <0.0001

2 4,1 4.00,1.02 0.0200

3 6,1 5.99,1.02 0.0224

4 10,1 10.02,0.99 0.0224

5 15,1 15,0.98 0.0200

6 21,1 20.92,1.00 0.0800

7 21,3.3 20.85,3.34 0.1552

8 9,3.8 8.98,3.57 0.2309

9 8,3.8 8.04,3.72 0.0894

10 3,8 3.08,7.93 0.1063

11 3,6 3.05,5.94 0.0781

12 3,4 3.06,3.95 0.0781

13 3,2 3.03,1.98 0.0361

14 0,1 0.03,1 0.0300

15 -7,4 -6.86,4.09 0.1664

16 4,8 4.05,7.90 0.1118

The mean Euclidean distance error is 0.0779m. This proves that the detection module achieves a

decent result and meets the FVE requirement.

13

6.3.3 Pedestrian Tracking

The tracking module is for tracking multiple pedestrians within a 20-meter range of the

infrastructure. It should reliably track each of the existing pedestrians and handle new ones who

are stepping into the range for the first time.

The module is currently able to track a single pedestrian reliably. The module utilizes the

information from the prediction module and associates the nearest detected points to the

predicted position.

The unit test for the tracking module is conducted by assigning human agent to walk

between coordinate (20, 0) to (20, 3) repeatedly. The detected points’ y-coordinates versus time

frame are stored and visualized. The optimal shape of the graph should be sine-wave like and y-

coordinate value should be within the range of (0.3, 2.7). The tracking test graph is shown in

figure 9 below.

Figure 9. Tracking Test

6.3.4 Trajectory Prediction

The problem of trajectory prediction is essentially one of sequence prediction where,

given a sequence of input coordinates (of a moving pedestrian), we must identify a pattern and

use that pattern to predict the future sequence of coordinates of the same pedestrian. This

subsystem forms the crux of our entire system since the output of this subsystem is published to

the vehicle.

We have made some good progress on this subsystem although we had to settle for a

different approach than the one we had initially anticipated using. The Social LSTM algorithm is

the state-of-the-art in pedestrian trajectory prediction. However, it suffers from difficulties in

debugging and dataset biases. Moreover, the algorithm was unsuitable for our requirements in

this semester since we are focusing on a single pedestrian use case whereas the true value of the

Social LSTM algorithm is found in cases with multiple pedestrians.

Hence, we shifted to a more deterministic approach using polynomial regression. Based

on an observation window of 12 frames (at a frame rate of 10 frames per second), we fit a

polynomial curve to input values. Using this curve, we extrapolated for the desired 12 frames (at

the same frame rate) and published this as our predicted trajectory.

14

For the fall semester, we proceeded with a second degree polynomial fit. We tested this

algorithm on live pedestrian data and were satisfied with the results that we were getting. The

graphs in figure 10 below show the performance for some specific pedestrian trajectories.

a. (b) (c)

 (d) (e)

Figure 10. Graphs of trajectory prediction for trajectories of different radii of curvature (r).
(a) r = ∞, (b) r = 3m, (c) r = 2m, (d) r = 1m, (e) r = 0m (right angle)

6.3.5 Electrical Subsystem

The Power Distribution Board (PDB) was designed to power the LIDAR, Jetson TX2,

WiFi router, and ZED camera from an 11.1V battery. The PDB involves overvoltage,

overcurrent, and reverse voltage protection. A block diagram representing the current electrical

system is shown in figure 11 below.

15

Figure 11. Electrical System

The PDB is operational and below are the results for the test conducted on the PDB.

Table 6. PDB Testing

Device
Test Input

Voltage (V)
Input Current
Capacity(A)

Rated Output
Voltage (V)

Observed
Voltage(V)

VLP-16

LIDAR
11.1 0.89 11.1 11.09

Jetson TX2 11.1 0.95 11.1 11.09

Router 11.1 1.5 11.1 11.02

Zed Camera 11.1 0.4 5 5

6.4 FVE performance evaluation

 The FVE and FVE encore were successful because we validated all of the requirements

mentioned in Section 6.1. Looking at it in greater detail, the detection subsystem worked

remarkably well given that we were working just with the LiDAR. The average detection error of

0.09m was well below the required 0.3m (M.P.1), working well even for the range of 20m

(M.P.2). The trajectory prediction was a very basic implementation, but it worked well for the

FVE as our error of 0.45m satisfied the 0.5m error according to M.P.3. Our cycle time came out

to 0.19 seconds, which was significantly less than the 1 second promised (M.P.4). This will

probably be tougher to meet in the spring with more computationally demanding algorithms and

less processing power. The last test, which involved the entire system, worked sufficiently.

Unfortunately, it lacked the repeatability that all the other subsystems had. We were able to get

the car to stop (M.P.5), which satisfied the requirement. However, it required careful calibration

and tuning that should not have been necessary.

16

6.5 Strengths and Weaknesses

Strengths

a. Detection Accuracy: The detection accuracy tested below 0.1m. This was excellent,

considering our requirement of less than 0.3m. We are particularly happy with this because of

the amount of noise in the point cloud data.

b. Good Cycle time: Time taken between when the first pedestrian is detected to the first

published trajectory was around 0.19 seconds. This is a terrific refresh rate for our system.

c. Controlled Environment: We are very happy with how smooth our validation experiments

went in contrast with the frequency of interruptions during development. This is because we

did a good job controlling our surroundings and preventing interruptions.

d. Graphical User Interface (GUI): The GUI developed for demonstrating our performance

requirements showcased our requirements clearly and effectively.

e. Platform: The initial prototype of our project is complete. This is a strength because it will

serve as a platform for us to improve on our shortcomings.

f. Team: We have an excellent team with a wide range of skill sets. This is a key strength that

helped us in developing this project in a very short span of time.

Weaknesses

a. Localization: The localization done by the RC car was not to our expectations. There is great

room for improvement here, which we plan to do for the SVE.

b. Communication: Intermittent loss of WiFi signals made the communication between the

infrastructure and the RC car difficult.

c. Robustness: The system at present is not that robust to the noisy data coming from the

sensors. Our goal is to make it so robust that the system is as good at detecting and tracking

humans as other humans.

d. Background Registration: The physical infrastructure is not fixtured firmly enough to prevent

the high frequency vibration in the Velodyne from shaking it. Our aim for the SVE is to make

it totally stable.

Opportunities for improvement

The range of the detection algorithm satisfied the requirements that we had defined but

the performance dipped towards end of the range. This could be problematic going into spring.

Hence, we intend to solve the issue with fusion of camera data.

The trajectory prediction subsystem worked well and was able to recover from erroneous

predictions very quickly. However, the performance was at the edge of the corresponding

performance requirement and there is still a lot of room for improvement.

17

7. Project management

7.1 Work Breakdown Structure

Figure 12. Work breakdown structure

We have followed a deliverable oriented WBS with 4 functional branches -

infrastructure, perception, vehicle and communication. The last 2 branches are trivial to all

systems - integration and management. The green work packages have been completed, the blue

work packages are in progress, and the red work packages have not been started yet.

7.2 Schedule

The table below depicts a simplified version of the schedule for the spring semester. We

completed everything that we intended to complete for the Fall semester and even developed a

good platform for some of the tasks in the Spring. This will give us the time to attempt to

improve some of the subsystems developed in the Fall, especially the performance of the vehicle.

Some of these are newer work packages have been included in a little more detail now that we

have a clearer idea of how to implement each individual sub-system.

18

Table 7. Spring schedule

7.3 Test plan

7.3.1 Progress Review Milestones

Table 8 shows the milestones that we will attempt to achieve en route to completing the

project before the spring validation experiment.

Table 8. Progress Review Milestones

PR7  Construct new infrastructure

 Multiple pedestrian detection

 Multiple pedestrian tracking

 Design new autonomous vehicle subsystems

 Start calibration of camera with LiDAR

PR8  Port the detection and tracking modules to Jetson TX2

 Start the multiple pedestrian trajectory prediction

 Work on EKF, localization of new vehicle

 Finish calibration of camera with LiDAR

PR9  Finish multiple pedestrian trajectory prediction

 Finish developing new vehicle

PR10  Refine software pipeline

 Test the integrated perception module

 Communication from multiple infrastructures

 Finish Vehicle Simulation

19

PR11  Processing of data from multiple infrastructures

 Complete testing of perception module

PR12  Finalize the test environment and make required changes

 Calibrate the infrastructures and vehicle to the environment

7.3.2 Spring Validation Experiment
Location: Wiegand Gym, “north” points away from equipment desk, this is the +y axis

Equipment: Sensor Infrastructures, Vehicle, 4 human agents wearing non-black clothing

Table 9. Fall Validation Experiment Tests

Step Description Requirement

0.1

Set infrastructure #1 in location near door, oriented 45 degrees east of north. This is point

(0,0). Set infrastructure #2 14 meters east and 14 meters north of infrastructure #1,

oriented directly toward infrastructure #1.

none

1.1
Measure points (4,6), (4,7), (10,3), and (1,1) from origin. Mark these points on the floor

with blue tape.
Detection error

1.2.1
4 human agent stands at floor markers. Display centroids on desktop – measure error as

distance from points (7.1,1.4), (7.8,2.1), (9.2,-4.9) and (1.4,0).
Detection error

Test 1

Measure error from ground truth at each point.

 Test passes if all 4 pedestrians are detected and have average error less than 0.3

meters.
Detection error

2.1
Human agent stands at point (0,0), then walks to (14,0), then (14,14), then (0,14), and back

to (0,0).
Tracking area

Test 2
Display recorded pedestrian trajectory on desktop.

 Test fails if centroid disappears from human in tracking area. Tracking area

3.1
Human agents walk simultaneously between points (3,3), (3,11), (11,11), and (11,3) in a

clockwise fashion.

Trajectory

prediction

Test 3

View all timestamped paths

 Test passes if all 4 paths have timestamped information 1.2 seconds into the

future.

Trajectory

prediction

4.1 Set two 2 meter wide by 4 meter tall black curtains between (3,3),(3,1) and (3,1),(3,-1). none

4.2 Human agent stands at (2.5,2.5), then walks back into view of infrastructure #2. Cycle time

Test 4

Display tracking information on desktop.

 Test passes if first timestamped centroid and first published trajectory are less than

0.5 seconds apart.
Cycle time

5.1
Set vehicle at center at point (-15, 4.5). Set vehicle waypoint to (10,4.5). Human agent

starts walking north from (3,-1) two seconds after vehicle starts.

Stop short

5.2-5.4 Reposition curtains and repeat test symmetrically for each point (11,3), (11,11), and (3,11).

Test 5
Observe vehicle trajectories in all 4 cases.

 Test passes if vehicle stops short of pedestrians at each corner of intersection. Stop short

20

7.4 Budget status

Total Budget: $5,000

Spent: $1,362.35(26.527%)

Budget Left: $3637.65(72.753%)

Table 10. Project Expenditures

Item Price

Seville Classics Industrial All-Purpose Utility Cart, NSF Listed $69.99

Jiffyloc Heavy Duty Extension Pole, 4 - 8 feet, Made In USA $19.99

Jiffyloc Quick Release Adaptor $10

Jiffyloc angle adaptor $29.99

Jiffyloc male thread adaptor $4.99

Laser Pointer $35.00

PCB Materials $59.92

9 Gauge Wire $10.98

Lipo Battery explosion proof case $12.99

Voltage checker $9.54

Barrel Jack connector $7.99

DC barrel pigtail connector $6.99

BIG TICKET ITEMS

Zed Camera $449

NVIDIA Jetson TX2 Developer Kit $304.00

Wifi Extender $129.00

Multistar 11.1 V (4 Batteries) $165.98

TOTAL $1,362.35

21

7.5 Risk management

Table 11. List of risks and corresponding mitigation strategies

Risk
ID

Risk Definition Type
Likelihood

(1-5)
Consequence

(1-5)
Mitigation
Strategy

1
School work

Overwhelming
Schedule 5 3

Help each other with

work, get ahead when

possible

2
Personnel

Availability
Schedule 2 2

Share schedules ahead

of time, plan work

accordingly

3 OS Compatibility Technical 4 4
Dual booting system/

Backup system

4 RC Car Failed Technical 2 5
Simulation/ Build Back

up robot

5 Network Failure Technical 2 4
Redundancy

Communication

(a) (b)

Figure 13. Pie charts depicting: (a) Proportion of budget spent on big and small ticket items, (b)
Proportion of budget left vs budget spent

22

6
System

Environment
Changes

Technical 4 3
Document the

changes/ Backup
system// Use docker

7
Jetson TX2

Performance
Technical 3 4

Make the Origin
Chronos GPU

portable

8
WiFi Range
Insufficient

Technical 3 3 Use a WiFi extender

9
Multiple Sensors/

Infrastructure
Integration Failed

Technical 2 4

Design the system
where each

subsystem can
function

independently

8. Conclusions

8.1 Lessons learned

We learned a lot this semester. In the project, it seems, we learn more from our mistakes

than our failures. Here is a list of some of the issues we encountered and proposed mitigation

strategies.

1. System Environment Changes Issue:

o Problem: Some system variables or environments are changed. This causes other

sub-systems to crash.

o Lesson learned: Back up the system using the restore point that restores Ubuntu to

previous state (eg. Systemback in Ubuntu).

2. Vehicle and Velodyne Network Issue

o Problem: The system cannot connect to the Internet and the Velodyne at the same

time.

o Lesson Learned: Change the IP address of the router.

o Problem: The vehicle wifi is locked to a specific wifi network.

o Lesson Learned: Use the root account to modify the network manager settings.

3. Vehicle Localization Issue

o Problem: The vehicle cannot localize itself given the map and laser scanner data.

o Lesson Learned: Verify you know how a system is working before trying to fix it.

4. Camera and Velodyne Calibration Issue

o Problem: Calibration between the camera and LiDAR was unsuccessful after

weeks of effort.

o Lesson learned: Requirements are paramount. If a subsystem is unnecessary,

abandon it (camera).

23

We also develop some tools to improve the productivity and speed of the development and

testing. Here are some useful tools.

1. Automate repeatable tasks with shell script: Write shell scripts that can launch the nodes,

launch files and some specific commands (eg. ssh into other computer, launch the nodes

with specific order and timing).

2. Write alias of functions in bashrc to speed up experimentation.

8.2 Key spring activities

1. Build second infrastructure

2. Build the racecar and its navigation stack

3. Build the PCB for the racecar and the infrastructure

4. Enhance tracking pipeline to track multiple targets

5. Enhance prediction pipeline to predict multiple targets’ trajectories

6. Calibrate and fuse the camera and the pointcloud information

7. Visualize the result in the simulation

8. Set up the demo environment in the gym

9. References

1. https://www.autoaccident.com/statistics-on-intersection-accidents.html

2. Crash factors in Intersection-related crashes: an on-scene perspective.

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811366

3. https://mrsdprojects.ri.cmu.edu/2016teamd/

4. https://github.com/mrsd16teamd

5. Alahi paper. A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, S. Savarese. Social

LSTM: Human Trajectory Prediction in Crowded Spaces. In CVPR, 2016.

https://www.autoaccident.com/statistics-on-intersection-accidents.html
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/811366
https://mrsdprojects.ri.cmu.edu/2016teamd/
https://github.com/mrsd16teamd

