

Individual Lab Report- 2

By Danendra Singh

Team F: Falcon Eye

Danendra Singh

Yuchi Wang

Pulkit Goyal

Pratibha Tripathi

Rahul Ramakrishnan

20th October 2017

Individual Progress:

As my contribution to the MRSD Project-1 since the past week, I have worked on bebop2 drone

(provided to us by the sponsor) and controlled it via ROS interface. I also performed flight tests

to test the stability and hardware capabilities of the drone. Additionally, I helped set up the

battery interface for the Husky.

Bebop2 Drone:

Bebop2 drone is the second generation of low cost drone produced by Parrot. It has a 2700

mAh battery that gives it a flight time of approximately 20 minutes. Bebop2 has an 1800 fish eye

lens with digital image stabilization. It also has a vertical stabilization camera in the bottom,

shown in Figure 1, which works as an optical flow sensor and is used to stabilize the drone

when in flight. Every 16 milliseconds, an image of the ground is taken and compared to the

previous one to determine the speed of the Bebop Drone. Hence, in low light conditions, the

optical flow sensor is unable to view the ground image leading to an unstable flight during night

time.

Figure 1: Optical Flow Camera

We can communicate with the Bebop2 via a dual-band 2.4 GHz and 5 GHz link that transmits

power up to 21 dBm and has a range of 250 meters.

On switching on the drone, it broadcasts an open connection which I used to connect to my

Linux OS.

ROS control Bebop2 Drone:

 I used ‘bebop_autonomy’ ROS package to connect to bebop2. It is based on Parrot’s

official ARDroneSDK3 and is supported by the online ROS community. The steps I followed to

interface Bebop2 with ROS are as follows:

1. Get following ubuntu Packages:

a. sudo apt-get install build-essential python-rosdep python-catkin-tools

b. Follow these steps to Clone Parrot AR SDK

Create and initialize the workspace

$ mkdir -p ~/bebop_ws/src && cd ~/bebop_ws

$ catkin init

$ git clone https://github.com/AutonomyLab/bebop_autonomy.git

src/bebop_autonomy

Extra step for 64bit Ubuntu Xenial until parrot_arsdk debian package build

fixed

$ git clone https://github.com/AutonomyLab/parrot_arsdk.git src/parrot_arsdk

Update rosdep database and install dependencies (including parrot_arsdk)

$ rosdep update

$ rosdep install --from-paths src -i

Build the workspace

$ catkin build

2. Connect to Bebop2 WIFI.

a. Make sure that the ‘bebop_node.launch’ file has the correct IP address of the

drone.

3. Run Bebop’s ROS driver as a Master Node:

a. Source catkin workspace

source ~/bebop_ws/devel/setup.bash

b. roslaunch bebop_driver bebop_node.launch

i. Ignore if you get few warnings, the input might be missing some camera

feed frames. This can be seen in Figure 2.

Figure 2: Missing Frame Warnings while running master node

4. Send Commands to Bebop:

a. Take-off:

i. rostopic pub --once bebop/takeoff std_msgs/Empty

Figure 3: Take-Off command to Bebop2

b. land:

i. rostopic pub --once bebop/land std_msgs/Empty

Figure 4: Land command to Bebop2

c. View Camera Feed:

i. rqt_image_view

Figure 5: Video frame received from Bebop2

Challenges

The biggest challenge we faced since the last review was to get the husky moving. Initially we

were able to receive the communication data from the Husky but were unable to send

movement commands to it. However, after working on the Husky we got from NREC, we

figured out that the problem was in the battery extension cable we were using. One of the

ports of the cable was not supplying power to the Husky motors and hence it was not moving.

Finally, after lot of debugging we were able to move the Husky.

Individually, I faced few challenges while working with the Bebop2 drone. Initially, since I was

using Virtual Box for Linux, I was not able to connect to Bebop2 and run the Bebop master ROS

node. This took up lot of my time to figure out the problem. I tried changing the network

connection settings in Linux OS and bebop Launch file but got no success. Later, I found out that

the default connection type in Virtual Box is ‘NAT’ type. However, to successfully connect in

Linux to the Bebop which is originally connected via the Windows WiFi , the connection type in

Virtual Box should be of the type ‘Bridged’. This solved the connection problem in Linux.

Additionally, we tried testing the drone for takeoff and landing commands during the night and

encountered that the drone losses its stability and moves in random direction. We initially

thought that this is happening because the drone is not able to receive the GPS signals for

localization and hence tried testing it in the open. However, we got the same random

movements. On researching about the problem, we figured out that our thought process was

wrong and got to know that Bebop uses visual odometry to stabilize itself using a vertical

downward camera. Hence, during low-light conditions or night, the camera is not able to

distinguish between captured frames and hence is unable to perform visual odometry.

Another problem we faced was to discuss the scope of our project with our sponsor. Our

sponsor, Prof. Katia was not happy with the scope we had already defined in the first few

meetings and wanted us to change the use case. Her suggestions were logical and valuable but

was different from what we have originally decided. So, we had to incorporate some of these

changes with our original action plan. Our new use case is as follows: we wish to implement a

multimodal navigation system whereby the UAV flies in front of the AGV and surveys the

environment, searching for obstacles and mapping potential routes. This provides the AGV to

navigate autonomously to a desired path using paths generated by the UAV.

Teamwork

Yuchi worked on the Husky and Bebop2 drone. He was able to control the Bebop2 drone via

SDK on Linux and demonstrated takeoff and landing. He also took the initiative to setup the

Husky software alongwith Rahul.

Pulkit, Pratibha and Rahul worked on the Husly and were able to diagnose and solve the

communication issues of the Husky. They tried a lot of debugging on the software side and

were able to finally make the Husky running. They also configured a Logitech controller to

control the movements of the Husky.

I worked to control the Bebop2 via ROS. Pratibha helped me debug the errors and was also

responsible for carrying out flight testing with me.

Future plans

As my next PR goal, I will work with Yuchi to implement high-level control for Bebop2. Since our

end goal is to make the drone autonomously fly to a desired location, we plan to implement

ROS commands to direct the Drone to Fly to a GPS location input by the user. We plan to take

user input for GPS location, provide roll-pitch-yaw commands to make it fly to the desired GPS

location.

I also plan to check the network connectivity robustness with the Bebop2. Although the

manufactures claim that the Bebop has 250 m, we wanted to make sure that we have robust

connection between drone and the laptop to prevent the drone straying away from us.

Pulkit will work on developing higher-level controls for the Husky using encoders or IMU so that

we are able to move the Husky in a desired direction for a desired distance. Pratibha and Rahul

will work on incorporating GPS data into the ROS software. We plan to use MediaTek GTPA010

from the MRSD inventory and create a ROS node that is capable of reading the GPS information

from serial link.

