
Team F

Individual Lab Report 3

Progress Review 2

Yuchi Wang

Teammates

Danendra Singh

Pulkit Goyal

Rahul Ramakrishnan

Pratibha Tripathi

October 27, 2017



1 Individual Progress

My primary contribution since the last PR was the testing of a joystick-teleoperated Bebop 2 controller,
building a custom controller to track the Bebop’s state variables, visualizing the TF information inside
RVIZ, and reading GPS data from the Radiolink SE100 module.

1.1 Bebop 2 Joystick controller

Recall that last week, we demonstrated the ability to interact with the Bebop 2 through a ROS driver.
At that time, we did not have an actual ROS controller node that was receiving commands from an input
device or using a heuristic. Instead, we merely used the rostopic pub command to send the commands
one at a time. This week, I extended Danendra’s work by enabling full flight control of the Bebop 2
through a joystick controller node. I note that most of the joystick controller code is included with
the Bebop Autonomy package so actual software development on this component is minimal. Most of
my effort went into debugging compiler issues, tuning network parameters, and setting the controller
configuration.

The provided joystick controller node is called joy teleop and it reads inputs from the joystick controller
and publishes cmd vel messages to the bebop driver node. An rqt diagram of this architecture is shown
in figure 1. In addition, the drone publishes raw images files in the format of image raw, which can be
visualized with rqt image view. Putting all of this together, I was able to control the Bebop 2 Drone
with the joystick while also seeing the camera feed, in essence duplicating most of the functionality of
the Bebop 2 Android app.

Figure 1: The rqt graph for the joystick controller system

Danendra and I tested flying the Bebop 2 drone outside with the controller to see its stability and the
range of its functionality. During flight time, we noticed that the drone was very responsive and quick. In
addition, the drone did retain most of its stability functionality; we did not notice excessive drift while
hovering or instability during turning. Thus, we were confident that the low-level control algorithms
are built into the drone itself and this allowed us to better estimate the amount of work required
for developing our custom controller. A video of us controlling the drone via joystick is available at
https://drive.google.com/open?id=0B_arrxOe8EVOTHJaX0M4b2d2cVE.

1.2 Custom Bebop 2 Controller

I have started developing a ROS controller package for interacting with the Bebop 2 drone. The end goal
is to use some form of path and motion planning heuristic to control the drone but at the moment, I’ve
focused predominantly on implementing a state container functionality. There are many different state

1

https://drive.google.com/open?id=0B_arrxOe8EVOTHJaX0M4b2d2cVE


variables that are associated with the drone. Examples include the battery percentages, flying mode,
and odometry. However, when I was exploring the SDK and the ROS driver package, I realized that the
drone lacks a get functionality - that is, the controller cannot query the drone for specific information;
instead the drone publishes these information when their state changes. Clearly, it can be quite annoying
to develop a controller if the necessary information cannot be retrieved instantly so I’ve been working to
first record and store all this information inside appropriate classes.

1.3 RVIZ visualization

After completing part 3 of the Programming Familiarization assignment, it is obvious that some of the
data published by the Bebop 2 can be used to visualize its location in RVIZ. Furthermore, we have a
need to do so because our project will certainly need to localize the Bebop with respect to the target
location and the Husky AGV. There are two ways of visualizing the drone within RVIZ. First, the drone
publishes odom data that can be read directly by RVIZ (Fig 2). As expected, when testing with this
setup, we noticed that the reading is stable but over time it will drift so we will need to integrate other
sensors with a Kalman Filter for more accurate results.

Figure 2: The Bebop 2 related frames are visualized with respect to the odom frame in RVIZ

Second, I was able to localize the drone through the use of April Tags placed on the ground. The use
April Tags has direct significance to our project because both Katia and her PhD students have advised
us to simplify the validation setup through the use of April tags to represent both the AGV, open paths,
and obstacles. The image raw data published by the drone was fed into an apriltag detector node on
my computer (this can be seen in Fig 1), which publishes tf messages. This information was then
visualized in RVIZ. A key difference between using April Tags and odometry data was that the April
Tags was relatively consistent over time (did not drift), but it fluctuated significantly from one second
to the next. However, I don’t think this is an inherent problem with apriltags and is instead caused by
a configuration issue (I experienced the same issue with Part 3 of the assignment). My plan to address
this issue is discussed in section 4.

2



Figure 3: The camera frames are visualized with respect to the April Tag (a frame) frame in RVIZ

1.4 RadioLink SE100

Because the Husky we acquired from George and Dimi both have no sensors, we need to select and
purchase our own devices. I noticed that there was a SE100 GPS module in the MRSD inventory so I
took it out to test it (I also wanted the Arduino Shield but that was not there). The SE100 is a GPS
module designed for the PIX flight controller. The SE100 has both UART and I2C connectors (Fig 4)
but no information was given on how to directly interact with the connections. As a result, I took a trial
and error approach and assumed that the module would publish GPS info by default on TX and the RX
line was used only to change specific settings - I also ignored the I2C lines. I connected the TX line to
Digital 0 on Arduino and configured Digital 0 as Serial In. After tweaking the baud rate, I was able to
continuously receive NMEA data (Fig 5).

Figure 4: The connectors from the Radiolink SE100. Obtained from Radiolink SE100 User Manual.

3



Figure 5: Serial data in from the SE100. The GPS coordinates are invalid in this figure as the GPS has
no signal.

2 Challenges

The main difficulty in this progress review is the interface of the GPS. Because the GPS is designed to
be connected to a flight controller, there is no documentation on how to directly interact with it through
a computer. As a result, I had to look at online examples of other GPS modules and try to take the
same approach. I noticed that many of the examples only needed the TX, GND, and VCC lines to read
from the GPS. From this, I though that perhaps the SE100 didn’t require the RX or the I2C lines either.
Fortunately, this was the case but I wouldn’t have know otherwise.

For the Bebop 2 development, there weren’t many technical challenges where I was unsure of how to
do a certain task. Most of the objectives completed for this PR were not proof-of-concept objectives in
which we demonstrate the viability of a certain approach. For instance, I knew that the joystick could
be used to teleoperate (the code was provided) so the purpose of that objective was primarily to test
the performance of the Bebop driver. As well, Part 3 of the programming assignment has shown me
that localization can be accomplished with odometry data and apriltags within RVIZ. As a result, while
doing most of the tasks were time consuming, they did not present a significant technical challenge.

However, because we have managed to get both the Husky and the Bebop 2 Drone running through ROS,
there were certain logistical or management challenges in terms of deciding how the team should proceed.
Shortly after ILR02 was submitted, we decided to scope down the objectives for PR2 as we predicted
that this week would be rather busy due to the barrage of assignment deadlines. In addition to the
CAD and PCB assignments that were due, there were also many aspects of the AGV/UAV that we can
develop so it was not clear which parts we should focus first. For instance, we could have started with the
higher-level flight control, image-stitching and map generation from UAV, or AGV Velodyne integration.
To determine what was truly necessary, we had to look at our WBS, risks, functional architecture, and
employ the good advice of Dimi. In the end, we decided that localizing the UAV was a prerequisite to
actually implementing higher-level controls.

4



3 Teamwork

As previously described, joint work that I was involved in was the Bebop joystick testing with Danendra.
For other tasks, Pulkit and Rahul were able to control the Husky with a joystick. In addition, Pulkit and
Rahul are working together to complete a CAD design for a sensor mount for the Husky. This sensor
mount would have to support the Velodyne Puck, the GPS module, the onboard PC and an additional
24V battery to power the sensors. As well, it should have an open and big platform for the UAV to
take-off from and for an April Tag to be placed.

Pratibha and Danendra also worked on designing a power distribution board for connecting the sensors
with the battery. This is the same work that needs to be accomplished for the PCB assignment. Rahul
has also been looking into how to read and process the data from the Velodyne Puck (since John has
managed to procure two Pucks from Velodyne). As we currently do not have the actual sensor, Rahul
has downloaded .pcap files, converted them to bag format, and visuzlied that in RVIZ.

4 Future plans

I will continue to work on the GPS module to either connect the module directly to the onboard Linux
computer through USB or to use the Arduino as a middleman. I would prefer to connect it directly to
reduce the complexity of the overall system. Angad said that he had personal experience doing this so
I will contact him for help if needed. Furthermore, I will convert the NMEA data into a more useful
format and publish it on a ROS topic. There is a ROS package (nmea navsat driver) available so
I will try to use that. I will also try to fix the April Tag issue described in section 1.4 and combine
both odom, apriltag localization, and GPS data (this can be read from fix topic, with message type
sensor msgs/NavSatFix ). Lastly, I will try to run both the Husky driver and the Bebop driver on one
system such that the April Tags, the Husky, and the Bebop 2 can all be localized with respect to each
other.

Danendra will look into a higher level controller for the UAV that takes in a location and the UAV can
autonomously fly there. There is built in flight plan control on the Bebop 2 so he will try to use that.
Pulkit and Rahul will continue to work on developing the CAD design for the sensor mount. Rahul
has started testing the Velodyne driver but Velodyne doesn’t provide the source code for the driver and
we need it to integrate into our architecture. As a result, he has currently installed and integrated a
Velodyne driver from a 3rd party source and he will continue to test and calibrate the settings. Pulkit
and Pratibha will look into the incorporating the encoder data from the Husky to estimate its state.
Furthermore, they will implement a controller that takes in a location and have the Husky autonomously
drive there, using the encoder data as feedback.

5


	Individual Progress
	Bebop 2 Joystick controller
	Custom Bebop 2 Controller
	RVIZ visualization
	RadioLink SE100

	Challenges
	Teamwork
	Future plans

