TEAM F

INDIVIDUAL LLAB REPORT 5

Progress Review 4

Yuchi Wang

Teammates
Danendra Singh
Pulkit Goyal
Rahul Ramakrishnan

Pratibha Tripathi

November 22, 2017

1 Individual Progress

My primary contribution since the last PR was the development and implementation of a custom GPS
navigation controller for the Bebop 2 Drone and implementing a low pass filter for April Tag detection.
The controller design involved several subtasks: calculation of the required heading and the difference in
angle between the heading and the yaw, designing the controller logic and tuning the parameters, and
expanding the GPS navigation code to multiple waypoint navigation.

1.1 Heading calculations

Recall that in the last PR, we were able to calculate the distance between two GPS locations. This
information is important for GPS navigation as it allows us to set a margin parameter to specify our
desired accuracy. However, the distance alone isn’t sufficient information for autonomous navigation as
the drone also requires a heading direction. Specifically, the drone needs to know which heading it needs
to go to reach the target destination from its current location. This is also known as the forward azimuth
and it is expressed in degrees from the north axis to the target. The equation for calculating this value
is provided below, where A is the longitude and ¢ is the latitude, and this calculation was implemented
in the navigation controller.

6 = atan2(sin A\ cos 2, cos @1 Sin o — Sin; cos pa cos AX) (1)

In addition, the drone needs to know its current heading such that it can minimize the error between
its own heading and the forward azimuth. Fortunately, this information is already published by the Bebop
Autonomy driver and can be read directly from the states/ardrone3/PilotingState/AttitudeChanged
topic. With this information, Danendra and I tested that the Bebop 2 Drone is able to align its heading
with the forward azimuth. However, there were a significant number of challenges that were encountered
when testing this functionality which slowed down our progress (discussed in section 2).

1.2 Controller design and tuning

The basic idea of the navigation controller is simple: move in the direction of the GPS waypoint until the
drone is within a certain radius of the location. The heading calculations described previously provides
the drone with the direction of movement while last PRs work on GPS distances provides the radius
margin. In terms of implementing the controller, there were two main approaches that I considered.

First, I note that the drone is omnidirectional and thus it does not need to face a certain orientation
before moving in that direction. As a result, a possible controller implementation could simply provide
x-y translation commands in a ratio determined by the difference in heading. For instance, if the
required heading to the target destination was 90°of the drones current heading, then the appropriate
move command would be (0, —1,0), moving the drone in the —y direction. If the required heading was
45°, then the move command would hypothetically be (1/v/2,—1/+/2,0). The issue with this control
architecture is that Bebop 2’s move commands are not specified as m/s but instead in roll, pitch, yaw
values (as a percentage of their max angles). Because the max angles are different for roll and pitch
and the aerodynamics of the Drone are different when flying in different orientations, a command of
(1/v/2,—1/+/2,0) does not actually move the drone at exactly 45°. It may have been possible to calibrate
the roll and pitch commands but this approach would’ve been more complex than what was actually
implemented.

The first implementation of the controller separated the rotational movement from the translational
movement. The basic premise is to first orient the heading to face the target destination and then issue
a move forward (1,0,0) command, repeating the sequence until the drone is within a certain radius
margin of the final location. The first controller implemented this concept but it performed very poorly
during testing (further discussed in Sec 2). When Danendra and I tested the controller, we noticed
that the flight was rather stiff and the drone moved slowly - a video of our first flight can be found in

Section 5, item 1. Varying the margin parameters helped increase the smoothness of the flight but it also
decreased the accuracy and thus was not an acceptable compromise. The current controller combines
and calculates the translation and rotation values in proportion to the distance and heading error from
the target location. The relation between the speeds and the error were initially linear (P controller)
but further experimentation revealed that a non-linear scaling from minimal speed to maximum speed
results in better performance. A video of the current controller is shown in Section 5, item 2.

1.3 Expansion to multipoint navigation and code refactoring

Although the videos shows multipoint navigation capability, the original form of the controller only
allowed for one GPS target. Incorporating a multipoint GPS navigation system involved changes to the
code to process multiple waypoints and during the test process, it also motivated the other refactoring
changes described below.

Initially, the target GPS location was hard coded but it became apparent that this approach would
not work for multiple GPS waypoints. Creating a new variable for each GPS waypoint unnecessarily
complicates the codebase while hardcoding each value in an array is time consuming and does not
generalize well to different number of waypoints. In addition, recompiling the source code each time
just seems like bad practice so I decided to migrate the GPS waypoints to use ROS param for run-time
resolution. Several other run-time parameters mostly used for tuning purposes were also moved to
the .launch file and retrieved via rosparam. They include the minimum and maximum angular and
translational speed of the drone, the alpha value for april tag detections, and the margins.

In addition, I implemented a logging functionality into the codebase. Previously, debugging the code was
accomplished primarily through print statements to cout but this method is crude, doesn’t generalize
well to larger programs, and the bebop driver itself also outputs a significant number of warning and
error messages to cout. As we added more features, these extraneous error messages increased and it
soon became very hard to find relevant log information in the terminal. As a result, a logging feature
was created so that each callback function can record its time of callback, the values it reads, and the
members that it changes. A high level diagram of the entire controller schematic is shown in Fig 1.

List of target
destinations

<=

|—»| Distance Calculation \

GPS Callback

| Forward Az_imuth
Calculation

!

Yaw Callback | —»| CNangeinyaw /
calculation

-t JE- JE

Logging M

Translation and
rotation commands

Figure 1: Schematic of controller

1.4 April Tag stabilization

Unstable localization with April Tags due to the concatenation of multiple transforms has been a per-
sistant problem for the last two PR. Sasanka, our PhD advisor, suggested that we try implementing a
simple low-pass filter to stabilize the readings. Following his advice, we implemented the filter in the
following form:

yi = azi—1+ (1 —a)yi 2)

After some tuning, we managed to get significantly better localization with o = 0.00003. Using this
data, we plotted the pose of each April Tag in rviz as an arrow and also displayed the poses and distance
from the home_frame (represented by april tag 0 and whose pose is at the origin). The localization with
the filters is very accurate - well within the margins that we have set for FVE. In Fig 2, 8 April Tags are
placed around Tag 0 in a radius of 1m and facing outwards. The visualization of their pose is shown in
Fig 3 - one can see that the distances are within cm’s of 1m.

Figure 2: Picture of 8 April Tags placed in a circle of radius 1m around tag 0

Figure 3: Visualization of the 8 April Tags in rviz

A disadvantage of using low pass filters is the slow response time of the readings. In our tests, we noticed
a delay of approximately 1s between the moving of an april tag and its new location reflected in rviz.
However, this isn’t a significant issue for us as we are using April Tags to represent mostly stationary
objects (ie, the location of the paths). The only object that we are tracking which will be moving is the
Husky. At the moment, this does seem to be a challenge that we will have to overcome and we currently
do not have a solution in mind. We plan on exploring the exact implications of the low pass filter on
localizing the Husky after the FVE.

2 Challenges

There were many challenges associated with testing the gps and navigation functionalities of the Bebop
2 Drone. First, our decision to perform the FVE outdoors brings along many inconveniences associated
with the weather. As winter gets closer, the temperature drops and snowfall is a real concern. We have
significant difficulty testing outside in these weather conditions as snowfall will make the laptop wet, the
cold weather is not conducive to debugging with exposed fingers, and the earlier sunset means less time
for flying with visual odometry. These challenges affected all stages of the controller development.

In addition, there were a number of non-weather related challenges when Danendra and I were debugging
the controller. First, the initial testing location was the backyard of B Floor NSH but it turns out that
location is extremely inconvenient for flying drones. It is situated right next to the parking lot and is
immediately proceeded by a corner, which means that there are many cars passing by and we cannot see
their approach from far (due to the corner obscuring our view). As well, the environment was crammed
which limited the space where we could fly the drone and the tall buildings resulted in numerous dead
zones for the GPS. As well, the places that did have GPS also had drifts of ridiculous proportions
(50m). There were also some bugs in our code due to the conversions from degrees to radians and the
aforementioned environmental issues made it very hard to narrow down the source of bugs. Eventually,
we talked to Dimi who suggested that we test our drone in the field (next to Hamerschlag Hall). We got
much better results afterwards.

The first implementation of the controller produced stiff movement due to the discrete nature of GPS
updates and a hardcoded magnitude for the move commands. The basic algorithm first compared
its current heading with the required heading. If it was outside a margin m,, it would rotate at v,.
Otherwise, it would compare its current distance to target against a margin my. If it was outside this

margin, it would move forward at a speed vg. Unfortunately, this algorithm performed very poorly in
our tests. If v, was too high, the drone often overshot and oscillated because yaw readings only update
at a certain frequency. This also meant that it never moved forward. If v, was set too low, the drone
rotated too slowly. If m, was set too low, we would theoretically achieve higher accuracy but in practise
the drone just overshot the margin. We solved this issue by implementing a proportional controller: if
the heading error is large, then the drone should rotate fast. Otherwise, it should rotate slower as to
not, overshoot its heading. Furthermore, we combined the translational commands with the rotational
commands so that we are guaranteed that the drone progress forward.

3 Teamwork

Danendra worked with me on the testing portion of the navigation controller. Due to the dangers of
flying a drone in a populated area, testing the drone necessitated multiple people to operate the drone
and also look out for bystanders. In addition, Danendra worked on the PDB soldering with Pratibha.
There has also been significant progress on the Husky subsystem thanks to Pulkit, Rahul, and Pratibha.
They have been experiencing a number of mysterious issues with the Husky’s onboard miniPC and they
have managed to solve most of them. First, the CMU-SECURE network seems to have issues with the
Husky image as apt-get commands often didn’t work. This was very troublesome as it slows down any
development progress if they are unable to install the necessary packages. Furthermore, they found out
that the configuration identity of the GPS module conflicted with the identity of the Husky serial port.
As a result, whenever they plugged in the GPS, the communication to the Husky itself would disappear
since the OS prioritized the GPS over the Husky. They have resolved this by switching back to the
SE100 GPS. Rahul has also worked on the networking with the Bebop 2. He has managed to configure
the Bebop 2 as a WiFi client, thus allowing us to finally run all our systems on one network.

4 Future plans

Our immediate plans for the future is to prepare for the FVE. To that end, Pulkit, Rahul and T will
focus our attention toward the Husky while Pratibha and Danendra will work on the PDB. The April
Tag localization and Bebop 2 GPS navigation is already complete so those are not high priorities for
the upcoming weeks. For our FVE, we have decided to perform Husky GPS waypoint navigation. At
this point, this task has not been started. However, we have a clear approach to accomplishing this task
before FVE. Clearpath has a template in ROS for GPS navigation so our first plan is to adapt their
package to the sensors and ROS topics that we have. If that does not work, we will adapt the GPS
navigation code from the Bebop 2 to the Husky. This should provide us with adequate performance for
FVE as the overall navigation algorithm is the same and the codebase is written in such a way that it
abstracts away the underlying system.

5 Video Links

1. Multipoint navigation with stiff controller
https://drive.google.com/open?id=1Rn768_7J1Kf0QKdr5Q5_jtTDgHWBOKfe

2. Multipoint navigation with current controller:
https://drive.google.com/open?id=1nHqpn80f0KwHF11c4WRYtS6e2n9W11q2

https://drive.google.com/open?id=1Rn768_7JlKf0QKdr5Q5_jtTDgHWBOKfe
https://drive.google.com/open?id=1nHqpn80fOKwHF1lc4WRYtS6e2n9W11q2

	Individual Progress
	Heading calculations
	Controller design and tuning
	Expansion to multipoint navigation and code refactoring
	April Tag stabilization

	Challenges
	Teamwork
	Future plans
	Video Links

