
Sensors	and	Motor	Control	Lab	
Individual	Lab	Report	

Changsheng	Shen	(Bobby)	
Team	D	(CuBi)	

Teammates:	Laavanye	Bahl,	Paulo	Camasmie,	Jorge	
Anton	Garcia,	Nithin	Meganathan		

February	14,	2019	

Individual	Progress:	

My	responsibility	in	this	sensors	and	motor	control	lab	is	to	implement:	

1.The	graphical	user	interface	(GUI)	

2.The	gateway	program	for	serial	communicaPon	between	the	GUI	running	on	the	computer	
and	the	Arduino	microcontroller	board	that	interfaces	with	the	sensor	and	motors.	

Graphical	User	Interface:	

The	 soQware	 framework	 that	 I	 have	 used	 to	 implement	 the	 GUI	 are	 ROS	 Qt	 (rqt),	 and	 the	
dynamic	reconfigure	package.		

ROS	Qt	is	a	powerful	GUI	framework	that	provides	a	variety	of	built-in	plugins	that	is	ready	to	be	
integrated	with	ROS-based	programs,	including	plots,	Y	tree,	dynamic	reconfigure,	etc.	With	the	
plots	plugin,	user	can	select	an	acPve	ROS	topic,	on	which	data	are	published	from	a	running	
program.	 Then	 the	 real-Pme	 data	 will	 be	 plo[ed	 relaPve	 to	 the	 Pmestamp	 generated	 from	
system’s	 clock.	 It	 is	 also	 straight-forward	and	 convenient	 to	 change	 specific	 se]ngs	 regarding	
the	plots,	 such	as	 line	width,	 color,	display	 scale	 for	 x-axis	and	y-axis,	etc..	 I	have	uPlized	 this	
plugin	 and	 have	wri[en	 a	 program	 to	 publish	 the	 sensors’	 data	 and	motor	 feedback	 values,	
received	 from	 Arduino	 through	 serial	 port,	 onto	 each	 individual	 ROS	 topics.	 Then	 in	 the	 rqt	
interface,	one	can	simply	select	the	desired	topic	name	and	will	be	able	to	see	real-Pme	plo]ng	
of	the	data	stream.	

Below	shows	the	real-Pme	plot	of	the	values	of	infrared	sensor	and	ultrasonic	sensor.	Note	that	
the	sensors	are	not	calibrated	well	enough	to	map	to	the	same	physical	scale	measure	in	real-
world,	however	both	sensors	output	a	similar	trend.	

Figure	1.	Real-Pme	Plot	of	Sensor	Data

Besides	 plo]ng,	 the	 GUI	 also	 supports	 sending	 commands	 to	 the	 Arduino	 to	 control	 the	
motors’	 posiPon	 and	 velocity.	 I	 have	 wri[en	 a	 configuraPon	 file	 and	 a	 python	 funcPon	 to	
configure	and	 interface	with	the	dynamic	reconfigure	plugin	package	of	ROS	Qt.	Below	shows	
the	graphical	interface.	

As	shown	above,	users	can	select	a	motor	type	(stepper	motor,	DC	motor	with	encoder,	or	servo	
motor),	a	control	mode	(posiPon	or	velocity)	from	the	pull-down	menu,	and	then	input	a	value	
of	desired	posiPon	or	velocity.	If	the	“GUI_Control_Enabled”	box	is	checked,	the	command	will	
be	 sent	 to	 the	 Arduino	 through	 serial	 communicaPon	 gateway	 automaPcally.	 The	 program	 I	
have	wri[en	will	 also	perform	a	 sanity	 check	of	 the	 input.	 It	will	 not	 send	 the	 command	 if	 a	
input	command	combinaPon	is	invalid.	As	an	example,	the	servo	motor	and	stepper	motor	does	
not	 support	velocity	control	mode.	Below	shows	a	plot	of	motor	velocity	 feedback,	while	 the	
motor’s	velocity	is	being	controlled	by	giving	mulPple	different	values	through	the	slider	bar	of	
the	GUI.	It	can	be	visualized	that	the	DC	motor	with	encoder	is	able	to	respond	to	the	command	
quickly	and	relaPvely	accurately.	

Figure	2.	GUI	for	Sending	Commands	to	Arduino

Figure	3.	Plot	of	DC	Motor	Velocity	Feedback	with	GUI

Serial	Communica?on	Gateway:	

I	 have	 also	 implemented	 a	 serial	 communicaPon	 gateway	 to	 establish	 the	 mutual	
communicaPon	between	PC	(GUI)	and	Arduino	(sensors	and	motors).		

The	program	is	based	on	python	and	ROS	serial	package.	It	keeps	receiving	the	data	packet	from	
Arduino,	decodes	 it	based	on	the	packet	protocol	we	established,	and	publishes	all	data	onto	
different	 ROS	 topics.	 On	 the	 other	 hand,	 it	 subscribes	 to	 the	 parameter	 server	 of	 ROS.	
Whenever	the	parameters	for	motor	commands	are	changed	by	user	through	GUI,	it	will	fetch	
the	updated	parameters,	pack	them	into	a	single	comma-separated	string,	and	send	it	through	
the	serial	port	to	Arduino	to	control	the	motors.	Codes	are	a[ached	at	the	end	of	this	report.	

Challenges:	

One	 challenge	 I	 have	 encountered	 is	 the	 configuraPon	 and	 interfacing	 with	 the	 dynamic	
reconfigure	package.	In	order	to	achieve	a	intuiPve	and	easy-to-use	user	interface,	I	have	to	look	
into	the	details	of	the	documentaPon	of	the	plugin,	to	choose	appropriate	variable	types	for	pull-
down	menu	selecPon,	slider	bar	for	value	adjustment,	as	well	as	the	check	box	for	enabling	or	
disabling	GUI	control	mode.	It	also	takes	some	Pme	to	figure	out	the	correct	way	to	configure	
the	package	and	to	establish	the	interface	between	the	python	program	and	the	plugin.	

Teamwork:	

Laavanye	Bahl:		
For	this	lab,	Laavanye	has	implemented	the	program	to	read	the	ultrasonic	sensor	value,	apply	a	
moving	average	low-pass	filter,	and	to	control	the	stepper	motor.	
		
Paulo	Camasmie:	
For	this	 lab,	Paulo	has	 implemented	the	PID	controller	 to	control	 the	DC	motor	with	encoder,	
consisPng	of	both	posiPon	and	velocity	feedback	control.	

Jorge	Anton	Garcia:	
For	 this	 lab,	 Jorge	 implemented	 the	 program	 to	 drive	 servo	 motor,	 to	 read	 the	 IR	 distance	
sensor	and	the	photomicrosensor,	and	to	perform	bu[on	debouncing.	He	also	implemented	the	
communicaPon	protocol	on	the	arduino-side	and	did	the	hardware-soQware	integraPon.	

Nithin	Meganathan:	
For	this	lab,	Nithin	wrote	the	transfer	funcPon	for	the	sensors	to	map	their	voltage	reading	to	
real-world	physical	quanPPes.	He	also	built	the	circuits	for	the	force	sensor	and	servo	motor.	

Project	Progress:	

For	the	CuBi	project,	we	assembled	the	first	two	 layers	of	TurtleBot	3	Waffle	Pi	as	our	mobile	
plaYorm.	 An	 Arduino-compaPble	 controller	 board	 and	 a	 Raspberry	 Pi	 3	 was	 mounted	 and	
connected	to	the	motors	on	the	chassis.	SoQware	development	environments	were	setup	such	
that	 we	 can	 drive	 the	 mobile	 plaYorm	 either	 by	 using	 a	 wireless	 joysPck,	 or	 by	 sending	
commands	through	ROS	over	the	wifi	network.		

For	 the	grasping	part,	we	designed	and	printed	several	prototypes	of	 the	grippers.	We	tested	
them	on	the	toys	 that	we	are	aiming	to	pick	up,	and	 iterated	the	design.	Next	step	will	be	to	
integrate	 the	 gripper	with	 actuators,	 and	 install	 it	 onto	 the	mobile	 plaYorm	 to	 test.	We	 also	
started	to	implement	soQware	for	object	segmentaPon	for	grasping,	based	on	RGBD	cameras.  

Figure	4.	The	Final	Circuit	IntegraPon	for	all	Sensors	and	Motors

Figure	5.	The	Design	and	Prototype	of	the	Gripper

Quiz:	

1. ADXL335	Accelerometer	

1. Range:	� 	

2. Dynamic	range:	 � 	

3. Purpose	of	� :	Filtering	out	the	high-frequency	component	of	input	voltage	source,	make	
it	“cleaner”.	For	high-frequency	component,	this	capacitor	will	act	as	a	wire	that	shorts	the	
high-frequency	component,	such	that	it	will	not	affect	the	input	voltage	supply	

4. Transfer	func?on:	� 	

5. Largest	expected	nonlinearity	error	in	g:	� 	

6. Noise	when	excited	at	25	Hz:	� 	

7. Noise	when	excited	at	0	Hz:	We	can	determine	this	by	measuring	the	output	voltage	at	zero	
input,	 then	 subtract	 it	with	 the	mean	 value	 (zero	 � 	 bias,	 1.5V	 for	 this	 sensor)	 to	 get	 the	
noise.	

2.	Signal	condi?oning:	

Filtering:	
1. Problem	with	moving	average:	not	 robust	 to	outliers,	 introduces	a	 lag	 in	Pme	domain	of	

the	output	signal	relaPve	to	the	raw	input	signal	(the	larger	the	window	size,	the	larger	the	
delay	is).	

2. Problem	with	median	filter:	not	robust	to	high-frequency	noise,	such	as	gaussian	random	
noise.	

Opamps:	

1. Input	range	-1.5V	to	1.0V:	

Choose	� 	as	the	reference	voltage,	 � 	as	the	input	voltage.	Denote	� ,	then	we	have	the	

equaPon:	

	� 	

±3g

6g

CDC

Vout = 1.5V +
0.3
g

⋅ a

±0.3% * 6g = ± 0.018g

150μg * 25 = 750μg

g

V1 V2 x =
Rf

Ri

Vout = V2(1 + x) − V1 ⋅ x

Plug	in	the	values	and	solve	the	two	equaPons,	we	can	get:	� ,	� 	

Similarly,	if	we	choose	� 	as	the	reference	voltage,	� 	as	the	input	voltage.	We	have:	

� 	

Solving	this	gives:	� ,	� .	However,	this	is	an	invalid	soluPon	since	resistance	

cannot	be	negaPve.	

2.	Input	range	-2.5V	to	2.5V:	

The	calibraPon	cannot	be	done	with	this	circuit.	If	we	choose	� 	as	the	reference	voltage,	� 	as	

the	input	voltage,	similar	to	above,	solving	the	equaPon	gives	� ,	which	is	invalid.	

If	we	choose	� 	as	the	reference	voltage,	� 	as	the	input	voltage,	solving	the	equaPons	gives	

� .	In	this	case,	� 	which	is	a	constant	voltage.	Therefore,	the	calibraPon	

cannot	be	done	with	this	circuit.	

3.	Control	

The	PID	controller	consists	of	a	proporPonal	gain,	an	integral	term,	and	a	derivaPve	term.	The	
final	control	output	� 	at	Pmestamp	� 	is	calculated	as	the	sum	of	the	three	terms:	

� 	

where	 � 	 is	 defined	 as	 the	 difference	 between	 target	 posiPon	 and	 current	 posiPon	 at	
Pmestamp	 � ,	 and	 Pme	 interval	 � 	 is	 the	 Pme	 difference	 (in	 seconds)	 between	 two	 adjacent	
Pmestamps.	A	boundary	limit	is	also	introduced	to	prevent	the	integral	term	from	"winding-up"	
too	much.	

If	 the	 system	 is	 sluggish,	 I	 will	 increase	 the	 proporPonal	 term	 (P	 term)	 because	 it	 directly	
decreases	the	system’s	rise	Pme.	

AQer	applying	this,	if	the	system	sPll	has	significant	steady-state	error,	I	will	increase	the	integral	
term	 (I	 term),	 because	 it	 integrates	 error	 over	Pme	and	 accumulate	 control	 output	based	on	
that,	thus	it	helps	eliminate	the	steady-state	error.	

AQer	this,	if	the	system	sPll	has	overshoot,	I	will	increase	the	derivaPve	term	(D	term)	because	
the	 derivaPve	 term	 anPcipates	 the	 error,	 which	 tends	 to	 add	 damping	 to	 the	 system	 and	
therefore	reduces	overshoot.	

V1 = 3V
Rf

Ri
= 1

V2 V1

Vout = − V1 ⋅ x + V2(1 + x)

V2 = − 3V
Rf

Ri
= − 2

V1 V2
Rf

Ri
= − 1

V2 V1
Rf

Ri
= 0 Vout = Vref = V2

u t

ut = Kp ⋅ errort + Ki ⋅ errort ⋅ Δt + Kd ⋅ (errort − errort−1)/Δt

errort
t Δt

Code	(serial	communica?on	gateway):	

#!/usr/bin/env python

import time
import serial
import struct
from Queue import *
import math
from math import sin, cos, pi

import rospy
import tf
import roslib

import numpy as np

from std_msgs.msg import String,Float32, Int8
from geometry_msgs.msg import Point, Pose, Quaternion, Twist, Vector3

from threading import Thread

from dynamic_reconfigure.server import Server
from mrsd_motor_control_lab.cfg import motorConfig

obstacle_pub = rospy.Publisher('obstacle', Int8, queue_size=1)
force_pub = rospy.Publisher('force', Float32, queue_size=10)
dist_IR_pub = rospy.Publisher('IR_distance', Float32, queue_size=10)
dist_ultrasonic_pub = rospy.Publisher('ultrasonic_distance', Float32, queue_size=10)

motor_vel_pub = rospy.Publisher('motor_velocity', Float32, queue_size=10)
motor_pos_pub = rospy.Publisher('motor_position', Float32, queue_size=10)

rospy.init_node('MRSD_Motor_Control_Lab', anonymous=True)
rate = rospy.Rate(100) # 100hz

current_time = rospy.Time.now()
last_time = rospy.Time.now()

serial_port = serial.Serial()

Motor type:
0 - Stepper Motor
1 - DC Motor with Encoder
2 - Servo Motor
motor_type = 0

Control mode:
0 - Position control
1 - Velocity control
control_mode = 0

Control value:
angle (0 to 360 deg) for position control
velocity (RPM) for velocity control (for DC Motor with encoder only)
control_value = 0.0

data_length = 6

dist_IR_prev = 0.0
obstacle_buffer_size = 5
obstacle_buffer = [1.0, 1.0, 1.0, 1.0, 1.0]

def updateParams(motor_type, control_mode, control_value):

 motor_command = str(motor_type) + "," + str(control_mode) + "," +
str(int(control_value)) + ","
 print(motor_command)

 if(serial_port.isOpen()):
 serial_port.write(motor_command)
 else:
 print("Error: Serial port " + str(serial_port.name) + " is not open")

def paramCallback(config, level):

 gui_enable = config["GUI_Control_Enabled"]

 motor_type = config["Motor_Type"]

 if motor_type == 0:
 motor = "Stepper Motor"
 elif motor_type == 1:
 motor = "DC Motor with Encoder"
 elif motor_type == 2:
 motor = "Servo Motor"

 control_mode = config["Control_Mode"]

 position = config["Position"]
 velocity = config["Velocity"]

 if gui_enable:
 if control_mode == 0:
 updateParams(motor_type, control_mode, position)
 elif control_mode == 1:

 if motor_type == 1:
 updateParams(motor_type, control_mode, velocity)
 else:
 print("Invalid: " + motor + " does not support velocity control
mode!")
 else:
 print("GUI Control not enabled...")

 return config

def myShutdownProc():

 serial_port.close()
 print("Serial port (" + serial_port.name + ") still on is " +
str(serial_port.isOpen()))
 print "Serial talker shutdown!"
 rospy.signal_shutdown("END Serial Talker")

def serial_receiving(serial_port):

 serial_port.flush()

 # Get current ROS time
 # last_time = current_time
 # current_time = rospy.Time.now()

 serial_incoming_raw = serial_port.readline()
 incoming_data = [i for i in serial_incoming_raw.split(",")]

 # for item in incoming_data:
 # print(item)

 print(incoming_data)

 if len(incoming_data) == data_length:

 obstacle = incoming_data[0] # 0: is obstacle, 1: no obstacle
 force = incoming_data[1] # N
 dist_IR = incoming_data[2] # cm
 dist_ultrasonic = incoming_data[3] # mm

 #dist_ultrasonic = float(dist_ultrasonic)/10.0 # convert to cm

 # motor_id = incoming_data[4] # 0: stepper, 1: dc motor with encoder, 2: servo
 # data_type = incoming_data[5] # 0: position, 1: velocity
 # value = incoming_data[6] # degrees for position, RPM for velocity
 dc_motor_pos = incoming_data[4]
 dc_motor_vel = incoming_data[5]

 # print(obstacle)
 # print(force)
 # print(dist_IR)
 # print(dist_ultrasonic)
 msg_obstacle = Int8()
 msg = Float32()

 global obstacle_buffer, obstacle_buffer_size

 avg = 0.0
 for i in range(obstacle_buffer_size - 1):
 obstacle_buffer[i] = obstacle_buffer[i+1]
 avg += obstacle_buffer[i]
 obstacle_buffer[obstacle_buffer_size-1] = float(obstacle)
 avg += float(obstacle)
 avg /= obstacle_buffer_size
 if avg < 0.7:
 msg_obstacle.data = 0
 else:
 msg_obstacle.data = 1
 obstacle_pub.publish(msg_obstacle)

 msg.data = float(force)
 force_pub.publish(msg)

 msg.data = float(dist_IR) * 0.5 + dist_IR_prev * 0.5
 dist_IR_pub.publish(msg)
 global dist_IR_prev
 dist_IR_prev = float(dist_IR)

 msg.data = float(dist_ultrasonic) / 10.0
 dist_ultrasonic_pub.publish(msg)

 msg.data = float(dc_motor_pos)
 motor_pos_pub.publish(msg)

 msg.data = float(dc_motor_vel)
 motor_vel_pub.publish(msg)
 # msg.data = value
 # if data_type == 0: # position
 # motor_pos_pub.publish(msg)
 # elif data_type == 1: # velocity
 # motor_vel_pub.publish(msg)

 #rospy.logerr("data interpertation error")
 else:
 print("Data length error!")
 print("Expected data length = " + str(data_length))
 print("Received data length = " + str(len(incoming_data)))

def talker():
 rospy.on_shutdown(myShutdownProc)

 serial_port.baudrate = 9600
 serial_port.timeout = None
 serial_port.port = '/dev/ttyACM0' # need to be changed based on hardware setting.
 print(serial_port)
 serial_port.open()

 print(serial_port.isOpen())
 print(serial_port.name)
 print(serial.VERSION)

 while not rospy.is_shutdown():

 serial_receiving(serial_port)

 rate.sleep()

if __name__ == '__main__':
 srv = Server(motorConfig, paramCallback)
 try:
 talker()
 except rospy.ROSInterruptException:
 pass

Code	(configura?on	file	for	dynamic	reconfigure):	

#!/usr/bin/env python

PACKAGE = "mrsd_motor_control_lab"

from dynamic_reconfigure.parameter_generator_catkin import *

gen = ParameterGenerator()

motor_type_enum = gen.enum([gen.const("Stepper_Motor", int_t, 0, “stepper motor"),
 gen.const("DC_Motor_with_Encoder", int_t, 1, “dc motor"),
 gen.const("Servo_Motor", int_t, 2, “servo motor")],
 "An enum to select motor type")

gen.add("Motor_Type", int_t, 0, "A motor type parameter which is edited via an enum",
0, 0, 3, edit_method=motor_type_enum)

control_mode_enum = gen.enum([gen.const("Position_Control", int_t, 0, "position"),
 gen.const("Velocity_Control", int_t, 1, "velocity")],
 "An enum to set control mode")
gen.add("Control_Mode", int_t, 0, "A control type parameter which is edited via an
enum", 0, 0, 2, edit_method=control_mode_enum)

gen.add("Position", double_t, 0, "desired position for the motor", 0.0, 0, 360)
gen.add("Velocity", double_t, 0, "desired velocity for the motor", 0.0, 0, 180)

gen.add("GUI_Control_Enabled", bool_t, 0, "Enable GUI Control Mode", False)

exit(gen.generate(PACKAGE, "motor_command", "motor"))

