
Jorge Anton Garcia
Team D – CuBi

Team mates: Laavanye Bahl, Paulo Camasmie, Changsheng Shen
(Bobby), Nithin Subbiah Meganathan

ILR01
Feb. 13, 2019

Individual	progress	

Motor	&	Sensors	Lab	
For the motors and sensor lab I was in charge of the micro sensor, the button de-bouncing code,
all of the integration, and the communication protocol on the Arduino-side.

The micro sensor consisted of an emitter and receiver which were one centimeter apart and
pointed towards each other. When something was placed in between both sensors, the infrared
light from the emitter would not hit the receiver and the voltage across receiver would decrease.
The datasheet said that the voltage drop across the emitting diode was 1.2V. Since the Arduino
provides up to 5V, the voltage drop across the resistor will be approximately 3.8V. The current
passing through the circuit should be around 20mA which is below the maximum 50mA the
Arduino can supply and in the range specified by the data sheet. Using ohms’ law, I calculated
that the desired resistance should be about 200 ohms. Regarding the receiving circuit, I used the
1 kohm mentioned as an example in the datasheet. This resulted in very low changes of voltages
(in the 0.02V range) when covering and uncovering the receiver and it was almost
indistinguishable from noise. I increased the resistance used in the emitter circuit by a factor of 5
and the voltage across the resistor would vary by 0.1V between when there was a detection or
not. This change in voltage was now perceivable by the Arduino. To map the voltages to a binary
decision of whether there is an obstacle or not, I used a low threshold (0.02V). The results were
very reliable when no object was obstructing the IR light path, but would sometimes bounce if
there was an obstacle. To reduce this effect, the Arduino predicts that there is not an obstacle if it
detects nothing at least three times in a row.

Figure 1. Emitter and receiver circuit for microsensor

To debounce the button, we created an interrupt. It would enter the interrupt at rise and fall. It
was only considered a button press if the time interval between the previous accepted button
click and the time of the interrupt was over 150ms.

20
0

oh
m

s

10
k

oh
m

s

For the integration of all the circuits, I listed all the pins each of the different circuits needed and
noted down whether these pins had any specific requirement (ex. an interrupt pin). I then planned
out which sensor would interact with each motor and designed where everything would be
positioned. I also wired all the circuits onto the breadboard. Regarding the software integration, I
decided on how the different components would be interfaced with and created contract
requirements for the different functions that interfaced with these components.

There were two modes of operation to control the motors: GUI and sensor based control. In GUI
mode, the sensor readings would be sent via serial to a computer and these would be graphed.
The GUI could then be used to send desired motor position and speeds. In sensor-based motor
control mode, the motors would move depending on sensor values. For example, if the ultrasonic
sensor reading values increased, the servo would move clockwise; however, if they decreased,
the servo would move counterclockwise. To switch between modes, we used a button. I wrote
the functions that would connect most sensor and motor components.

Finally, I worked with Bobby to write the communication protocol. The Arduino would send a
list of sensor values separated by commas via serial to the computer. The computer would send
three values separated by commas to the Arduino to control each of the motors. The first value
was the motor id, the second was a Boolean of whether we wanted to control speed or position,
and the last would be either the desired speed or desired angular position. I also had to
implement a way to read in Arduino serial which are received as bytes and map them to integers.

CuBi	
For CuBi, the three biggest things I focused on was controlling the dynamixels, creating a very
granular schedule, and setting team processes in place to work efficiently together. For all of
these tasks, I have been working with Nithin.

Nithin and I spent a lot of time getting familiar with the interface to dynamixels and figuring out
how to connect and control several of them in series. We worked with Paulo to define
mechanical requirements for how they will be used. Some motors need to operate as one and
hence need to have a master slave setup, while others need to be connected together, but
controlled independently. Since we had received most of these motors from the MRSD
inventory, many of the connector components were missing. These were ordered and received,
so we can now start mounting all the dynamixels and connecting them together.

We also created a more granular schedule and gant chart that spans the next two months. This
involves what tasks correspond to each person and what design decisions need to be made and by
who. AAt the same time, I set up the Trello, Slack and Gant chart. Trello will be used for sprint
planning and TeamGant will be used for more long-term planning and seeing if we are still on
track.

Challenges	
Motor	&	Sensors	Lab	
The biggest challenge and learning experience in this lab was integration. We had individually
divided up who would design the electronics and software of each component and had specified
what the function contracts for sensors and motors should look like. This was clearly not enough

and it took me much more than it should have to integrate everything, even after working with
teammates to debug specific parts. On the software-side, everyone had managed to run their code
using the built-in Arduino loop function, but bugs would appear when functions were called
outside of this loop. For example, despite contracts being made, sometimes other auxiliary
functions had to be called to update global variables. On the electronics-side, we had not planned
which circuit would use which pin. This resulted in having to look back at each individual
datasheet to check which components required interrupts or PWM signals. Wires became very
messy due to these last minute changes and a lot of time was spent relooking over the
specifications. As a team, we realized that this late planning is unacceptable. If it took me more
than 20 hours, with team collaboration, to integrate such a simple project, it would take much
longer for an entire robot.

Project	
The most challenging problem that I have faced on the project-side was how to create a schedule
when there are so many uncertainties. We are still deciding on what sensors we will be using and
where they will be placed. Designing code for each sensor requires a different set of tasks and
timeline. In addition, where we position the sensors also creates a large change in the timeline.
For example, if we placed the sensor on top of CuBi’s manipulator, tasks need to be created to
focus on how we are going to keep the camera as stable as possible on the mechanical-side and
how we can account for vibrations on the software-side. If the camera is placed on top of the
base, the effort will be placed in creating a tower-like object to put the camera as high as possible
to avoid obstruction from the manipulator. To account for this, we have shortened the in-depth
timeline and outlined the key decisions that need to be made. Without these design decisions, the
team will not advance and continue with further tasks.

Team	Work	
Nithin: Has worked directly with me to order Dynamixel parts and start designing the software
for interfacing with them and creating a schedule. On the lab, he created the functions mapping
from voltage value to read-world measurement and designed the circuits for the force-resistance
and servo.
Paulo: In charge of the manipulator design. He created a prototype which we all tested and gave
him feedback for. After his second iteration, the tray gripper passed our validation test of picking
up objects on carpets. For the lab he worked on the PID controller of the DC motor.
Laavanye: Has worked with Bobby to choose the sensors that we will be using for SLAM and
grasping. He has started to do object segmentation. In the lab, he designed the stepper motor and
ultrasound sensor circuit.
Bobby: Has ordered all the parts for the project. He has also built the turtlebot default
configuration and has set it up so it can be controlled using the remote controller. In the lab, he
created the GUI, created the communication protocol with me, and soldered several circuits.

Plans	
In 2-weeks, the gripper design and placement will be validated, the sensors will be validated and
placed, and the gripper mechanism will be completed and 3D printed. We will have our best
initial robot design with complete mechanical integration. We should then be able to start
working on picking up clutter.

I will work with Nithin to design the wiring for 4 Dynamixels and the code to control it. We will
be working with Paulo to ensure that the each Dynamixel has the necessary torque. As always I
will also keep track of progress status and make sure we are on track and moving as a team. I
will then start working with Laavanye on the vision system.

Task 4 (Sensors and Motor Control Lab) Quiz

1. Reading	a	datasheet.	Refer	to	the	ADXL335	accelerometer	datasheet	

(https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf)	to	answer	the	
below	questions.	
o What	is	the	sensor’s	range?	

• Typical:	-3.6	to	3.6	g	
o What	is	the	sensor’s	dynamic	range?	

• BW	=	1600	Hz	
• RMS	noise	=	(300	ug)	x	√(BW	x	1.6)	=	0.048	
• Ratio	of	max	signal	to	noise	=	 3.60.048	=	75	

• 37.5dB		
o What	is	the	purpose	of	the	capacitor	CDC	on	the	LHS	of	the	functional	block	diagram	on	

p.	1?	How	does	it	achieve	this?	
• The	goal	of	the	capacitor	is	to	act	like	a	high	pass	filter.	The	impedance	of	

a	capacitor	is	1/jwc.		Frequency	is	proportional	to	“w”	in	the	impedance	
equation,	so	the	higher	the	frequency,	the	lower	the	impedance.	
Therefore,	at	high	frequencies,	the	capacitor	will	act	like	a	short	allowing	
them	to	flow	to	ground	as	opposed	to	the	rest	of	the	circuit.		

• It	also	keeps	the	charge,	to	account	for	small	changes	in	voltage.		
o Write	an	equation	for	the	sensor’s	transfer	function.	

• (/0
12234

∗ /22234
/6

)*	(V	+	1.5)	=	a	

• 3.3	V	+	4.95	=	a	
o What	is	the	largest	expected	nonlinearity	error	in	g?	

• 0.3%	
o How	much	noise	do	you	expect	in	the	X-	and	Y-axis	sensor	signals	when	the	sensor	is	

excited	at	25	Hz?	
• 948ug	

o How	about	at	0	Hz?	If	you	can’t	get	this	from	the	datasheet,	how	would	you	determine	
it	experimentally?	

• It	cannot	be	found	in	the	datasheet.	I	would	keep	the	accelerometer	flat	
and	measure	the	xout	and	yout	voltage	values.	Then	I	would	map	them	
to	acceleration.	The	readings	should	be	0g,	the	difference	is	error.		

	
2. Signal	conditioning	

o Filtering	
§ What	problem(s)	might	you	have	in	applying	a	moving	average?	

§ The	moving	average	is	slow	to	react	to	quick	changes.	In	the	extreme	
case	where	you	are	working	with	signals	which	are	almost	digital,	the	
sudden	change	in	volts	from	0	to	5	volts	will	be	modeled	as	a	slow	
incremental	increase.	The	larger	the	window,	the	smoother	the	signal,	
but	the	slower	to	react	to	change.	In	addition,	very	high	peaks	of	signal,	
or	outliers,	can	strongly	affect	the	signal	for	the	given	time	window.		

§ What	problem(s)	might	you	have	in	applying	a	median	filter?	
§ If	the	median	filter	is	small,	it	will	be	able	to	quickly	react	to	change.	

However,	it	will	be	affected	by	low	frequency	noise.	For	example,	if	there	
filter	size	was	four	and	the	values	were	1,	2,	80,	90	where	the	last	two	are	
noise,	the	median	filter	will	return	very	high	numbers	for	three	intervals.		

§ The	median	filter	is	also	more	expensive	to	compute	than	the	mean	filter	
o Opamps	

§ In	the	following	questions,	you	want	to	calibrate	a	linear	sensor	using	the	circuit	in	
Fig.	1	so	that	its	output	range	is	0	to	5V.	Identify:	1)	which	of	V1	and	V2	will	be	the	
input	voltage	and	which	the	reference	voltage;	2)	the	value	of	the	reference	
voltage;	and	3)	the	value	of	Rf/Ri	in	each	case.	If	the	calibration	can’t	be	done	with	
this	circuit,	explain	why.	

	
• The	gain	is	positive	because	an	increase	in	input	voltage	results	in	an	increase	in	

output	voltage.	Since	the	gain	is	positive,	I	used	the	following	equation	for	both	
questions	below.	

• Your	uncalibrated	sensor	has	a	range	of	-1.5	to	1.0V	(-1.5V	should	give	a	0V	
output	and	1.0V	should	give	a	5V	output).	

o V2	is	Vin	and	V1	is	Vref	
o Vref	=	-3V	
o Rf/Ri	=	1	

• 	Your	uncalibrated	sensor	has	a	range	of	-2.5	to	2.5V	(-2.5V	should	give	a	0V	
output	and	2.5V	should	give	a	5V	output).	

• This	circuit	is	not	possible	as	it	requires	a	bias	and	a	gain	of	1.	To	
get	a	gain	of	1,	Rf/Ri	has	to	be	zero,	but	when	this	is	the	case	
there	is	no	bias,	so	Vout	=	Vin.		

Fig. 1 Opamp gain and offset circuit
	

3. Control	
o If	you	want	to	control	a	DC	motor	to	go	to	a	desired	position,	describe	how	to	form	a	

digital	input	for	each	of	the	PID	(Proportional,	Integral,	Derivative)	terms.	
• The	position	was	calculated	by	counting	the	poles	passed	per	unit	time.	

We	could	then	subtract	the	desired	position	by	the	actual	position	to	get	
the	error.	The	error	in	position	was	then	multiplied	by	the	proportional	
term,	the	sum	of	the	error	over	time	was	multiplied	by	the	integral	term	
and	the	change	in	error	was	multiplied	times	the	derivative.		

o If	the	system	you	want	to	control	is	sluggish,	which	PID	term(s)	will	you	use	and	why?	
• You	can	increase	the	proportional	and	integral	terms	so	that	it	reacts	

quicker.	The	proportional	gain	will	allow	the	motor	to	increase	its	speed	
when	its	error	is	large	and	the	integral	term	will	also	cause	a	quicker	
reaction	to	counter	act	the	large	initial	error.			

o After	applying	the	control	in	the	previous	question,	if	the	system	still	has	significant	
steady-state	error,	which	PID	term(s)	will	you	use	and	why?	

• Increase	the	integral	term	because	if	the	error	continues	to	increase	over	
time,	it	will	cause	the	motor	to	react	to	decrease	this	error.		

o After	applying	the	control	in	the	previous	question,	if	the	system	still	has	overshoot,	
which	PID	term(s)	will	you	apply	and	why?		

V2

V1

Vout

+Vs

-Vs

_

+

Rf Ri

• You	can	increase	the	derivative	control	because	the	moment	the	signal	
overshoots,	the	derivative	of	the	error	will	be	large.	For	example,	if	the	
desired	position	is	5	and	you	went	from	4.9	to	5.1,	then	your	position	
error	went	from					-0.1	to	0.1.	The	change	in	error	is	then	0.2	as	the	
errors	add	up.		

/*
 *
 */

#include <Servo.h>
// MOTORS:
Servo servo;
int servo_pin = 8;

// SENSORS:
int utlrasound_pin = A0;
int micro_sensor_pin = A1;
int force_input_pin = A2;
const int pwPinUltra = 9;

// BUTTON
int button_pin = 3;
int last_click_time = 0;
int min_time_bet_click = 200;
int STATE = 0; // GUI MODE is state 0 and Sensor Reaction mode is state 1

// setup interrupt - needed to count every pulse
#define encoder1Pin 2
const int motorOn = 13; // Enables motor driver

//Declare pin functions on Redboard
#define stp 7
#define dir 12
#define MS1 4
#define MS2 5
#define EN 6

float angPos = 0;
float angSpeed = 0.0;

int MAX_NUM_DIGITS = 4;
int sentinel = 44;
int ERROR_VAL = -1;

void setup() {
 // SENSOR SETUP
 pinMode(utlrasound_pin, INPUT);
 pinMode(force_input_pin, INPUT);
 pinMode(pwPinUltra, INPUT);

 pinMode(micro_sensor_pin, INPUT);

 // BUTTON SETUP
 pinMode(button_pin, INPUT);
 attachInterrupt(digitalPinToInterrupt(button_pin), button_isr, CHANGE);

 // MOTOR SETUP
 servo.attach(servo_pin);
 servo.write(1);

 // initialize digital pins for DC Motor
 pinMode(motorOn, OUTPUT);
 pinMode(encoder1Pin, INPUT_PULLUP);
 // Attach Interrupts for change in pin values encoder
 attachInterrupt(0, stateUpdate, CHANGE);

 // Initialize pins for stepper motor
 pinMode(stp, OUTPUT);
 pinMode(dir, OUTPUT);
 pinMode(MS1, OUTPUT);
 pinMode(MS2, OUTPUT);
 pinMode(EN, OUTPUT);
 resetEDPins(); //Set step, direction, microstep and enable pins to default states

 Serial.begin(9600);
}

void loop() {
 if(STATE == 0) {
 // GUI MODE
 // send all sensor readings
 int no_obstacle = get_microsensor_reading();
 int force = get_force_voltage();
 int pos_ir = get_pos_ultrasound();
 int pos_ultra = read_ultrasound();
 String readings = String(no_obstacle) + "," + String(force) + "," + String(pos_ir) + "," +
String(pos_ultra) + "," + String(angPos) + "," + String(angSpeed);
 Serial.println(readings);
 receive_motor_command();

 }
 else if(STATE == 1) {
 move_dc_from_pressure();
 move_stepper_from_ultrasound();

 move_servo_from_ir();
 }
 else{
 Serial.println("ERROR, state not 0 or 1");
 }
}

int readInt(){
 int sentinel_found = 0;
 int i = 0;

 char input[MAX_NUM_DIGITS];
 int read_int = ERROR_VAL;

 // can only read one byte at a time
 while(!sentinel_found) {
 if (Serial.available() > 0) {
 char c = Serial.read();
 sentinel_found = (c == sentinel);

 if(i>MAX_NUM_DIGITS && !sentinel_found) {
 return read_int; // will return error
 }

 if(!sentinel_found) {
 input[i++] = c;
 }

 }
 }
 return atoi(input);
}

int prev_stepper_val = 0;
int prev_stepper_ctr = 1;
void receive_motor_command() {
 //update_dc_motor_controls(prev_stepper_ctr, prev_stepper_val);
 updateDCMotor();

 // read all new motor positions
 int id, control, value;
 if(Serial.available()) {
 id = readInt();
 }
 if(Serial.available()) {

 control = readInt();
 }
 if(Serial.available()) {
 value = readInt();
 }
 else {
 return;
 }

 if(id == 0) {
 if (control == 0){
 moveStepper(value);
 }
 }
 if(id == 1) {
 update_dc_motor_controls(control, value);
 updateDCMotor();
 }
 if(id == 2){
 if(control==0){
 setServoAngle(value);
 }
 }
}

void button_isr(){
 int curr_click_time = millis();
 if(curr_click_time - last_click_time > min_time_bet_click){
 if(digitalRead(button_pin) == HIGH){
 STATE = (STATE == 0) ? 1 : 0;
 //Serial.println("Current State is: " + String(STATE));
 if(STATE == 0) {
 update_dc_motor_controls(1, 0);
 updateDCMotor();
 }
 }
 }
 last_click_time = curr_click_time;
}

void move_servo_from_ir(){
 int no_obstacle = get_microsensor_reading();
 int dist = get_pos_ultrasound();
 int desired_angle = map(dist, 0, 100, 0, 180);

 if(no_obstacle){
 //servo.write(dist); // tell servo to go to position in variable 'pos'
 setServoAngle(desired_angle);
 }
}

void move_dc_from_pressure(){
 int force = get_force_voltage();
 // TODO MAP TO 20 to 180 RPM
 int desired_speed = map(force, 20, 10000, 20, 180);
 if(desired_speed < 30) {
 desired_speed = 0;
 }
 update_dc_motor_controls(1, desired_speed);
 updateDCMotor();

}

// 15-100 cm is the range
float get_pos_ultrasound(){
 int pwm_read = analogRead(utlrasound_pin);
 float voltage = pwm_read * 5.0 / 1023.0;
 float pos = -20.31958 + (46500610.31958)/(1 + pow((voltage/7.433096e-8), 0.8057492)); //
TODO: map voltage to distance
 if(pos < 15 || pos > 100){
 pos = -1;
 }
 return pos;
}

