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Abstract 

 

Despite robotics making advancements in various fields, except for iRobot’s Roomba, no 

other robot has survived the home setting. It is because Roomba is the only commercial robot that 

addresses a utility need. Our goal is to create a utility robot that declutters the floor. Families with 

both parents working find it laborious to maintain a clean home with their kids cluttering the floor 

with toys. For our customer, at Cyert daycare, teachers find       it hard to clean the clutter while 

taking care of the babies. To tackle this problem, we are developing CuBi - an autonomous robot 

that seamlessly declutters the floor off toys. 

 

At this phase of the project CuBi can perceive toys on the floor based on size, move towards 

it, pick it up, and drop it in the start position. It can perform this operation continuously until all 

the objects within a certain area are cleared of toys.  
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1. Project Description 

 

There is a need for a task-specific domain robot, that will help people with daily chores, 

such as the “Roomba” [1], a robotic vacuum cleaner. However, to our knowledge, there is no 

consumer-level robot that will declutter the room, a task which is needed prior to a vacuum 

operation. A mobile base with a robotic arm on it is not a novel concept. There are examples from 

toys to research-grade robots. However, by optimizing the design of a robot, its mechanisms, 

perception and algorithms to a specific task, it should be possible to develop an efficient, 

affordable, and commercial version of it [2][3]: 

 

The main goal of this project is to automate the task of picking up clutter to improve the 

daily lives of parents, pet owners, and daycare workers. By the end of the project, our robot should 

be able to encounter a room in an initial state, such as the one on the left, and work autonomously, 

avoiding people, pets and obstacles along the way, to achieve the state on the right, in an optimized 

matter, with all objects picked up from the floor and placed at a desired destination. 
 

Fig 1. Different applications of robotic manipulator 

Fig 2. State of the room before and after CuBi's operation 
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2. Use Case 

Zachary is an early childhood educator in an infant toddler classroom. Most of the children are 

under one year of age. Ellen, who is under his care, suddenly started crying after dropping a rattle 

from her hand. As Zachary comforted her, he looked around the room. Over the last hour, the room 

had become cluttered with a dozen toys. As the children explored the space, the educators were 

busy with changing diapers, giving bottles, and offering children snacks. Now that all of that is 

finished, it was time to get the room cleaned up and organized so the morning activities can begin. 

 

 
 

 

 

 

 

 

 

 

 

 

Once Ellen stopped crying and was playing peek-a-boo with an educator in the other 

playroom, Zachary turned on CuBi to perform its work while he gathered the materials needed for 

the light and shadow exploration. CuBi went around the room, when no babies were around, 

picking up tennis ball-sized toys from the floor and placed them in the bin at the corner of the 

room. For 30 minutes, CuBi performed its work without crashing into anything and placed almost 

all the toys in the bin. Then CuBi went back to its dock to self-recharge for a few hours. Now that 

the floor was decluttered, Zachary was ready to set up for the light and shadow activity. He was 

happy to see the clean floor and quickly set up the next experience. 

 

Fig 3. CuBi picking clutter off 

the floor 

Fig 4. CuBi dropping the 

clutter at designated location 

Fig 5. The clean room after CuBi's operation 
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3. System-level Requirements 

The system-level requirements are divided into two categories: mandatory requirements 

and desirable requirements. Under each category, requirements are further classified as 

performance requirements that are functional requirements with qualitative measures, and non- 

functional requirements, based on their essence. The requirements originate from the project goal, 

derived from the use case, and validated through preliminary calculations and stakeholders’ 

feedback. 

 

There have been no changes in the mandatory requirements since the PDR since we believe we 

are on track to achieve all the requirements. We might modify M.P.9. depending upon future 

design iterations. In the desirable performance, the auto-charge requirement has been removed 

since our base does not have that capability unlike iRobot’s Create 2, the robot base we started 

with.  

 

3.1. Mandatory Performance Requirements 

 

The system will: 

 

M.P.1. Explore, scan and create a 2D map for 90% of the reachable area in a room 

M.P.2. Clean up a 20m² room with a dozen tennis-ball-sized objects within 30 minutes. 

M.P.3. Navigate to a designated reachable location in a room with pose error < 10%. 

M.P.4. Go over carpets and rugs with thickness less than 12mm. 

M.P.5. Detect and avoid 95% of the obstacles with a clearing distance of 20cm. 

M.P.6. Classify all tennis ball-sized objects with classification error < 20%. 

M.P.7. Pick up and collect each classified object within 5 attempts. 

M.P.8. Pick up at least 80% of the classified objects in the room 

M.P.9. Carry at least 2 tennis ball-sized object to the drop-off location. 

M.P.10. Drop the clutter in a designated container marked with AprilTag with success rate 

> 90% 

 
 

3.2. Mandatory Non-Functional Requirements 
 

The system shall: 

M.N.1. Operates autonomously. 

M.N.2. Be mechanically safe (i.e. no sharp edges). 
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3.3. Desirable Performance Requirements 
 

The system will: 

D.P.1. Continuously operate for at least 2 hours once fully charged. 

D.P.2. Have a sensing range of 15 cm to 4 m. 

D.P.3. Have a physical dimension limit of 0.5 x 0.5 x 0.5 m. 

D.P.4. Be affordable with a maximum cost of $5000 USD. 

3.4. Desirable Non-Functional Requirements 
 

The system shall: 

D.N.1. Be easy to use by pressing buttons or through a GUI. 

D.N.2. Have an inconspicuous, seamless appearance. 

D.N.3. Be reliable and not get stuck or malfunction frequently. 
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4. Functional Architecture 

The functional architecture aligns heavily with our use case. After CuBi is turned on, it is 

constantly looping through four major functions: exploring, categorizing objects, picking up 

objects, and dropping them off at a predefined location. It will continue repeating these major tasks 

until the room has successfully been decluttered. At this point, it will return to its initial location 

and start re-charging. 

One thing to note about the architecture is that the boxes marked with a red arrow require 

localizing, trajectory planning and moving. The boxes shaped like diamonds show functions which 

output decisions that determine what the robot will do next. 

  

               
Fig 6. Functional Architecture 
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5. Cyberphysical Architecture 

 

The Cyber physical architecture shows the interactions between the hardware and software 

components of the system. It is divided according to the basic functionalities of a robot: Sensing, 

Perception, Planning, and Actuation. 

Cyber physical connects each function in our architecture to a physical and information aspect 

of our system. For example, the ‘Avoid Obstacle’ function requires CuBi to sense, identify, and 

plan in order to accomplish it. Thus, our architecture has been designed in such a way that the 

subfunctions of each function relate to individual components of our system. 

 

         
Fig 7. Cyberphysical architecture 
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6. Current System Status 

 

6.1 Targeted Requirements 

 

The following set of requirements were targeted and achieved during our Spring Validation 

Demonstration.  

M.P.2. Clean up a ~4m² area with 5 tennis-ball-sized objects within 10 minutes 

M.P.3. Navigate to a designated reachable location in a room with pose error < 10% 

M.P.6. Classify all tennis ball-sized objects with classification error < 20% 

M.P.7. Pick up and collect each classified object within 5 attempts 

M.P.8. Pick up at least 80% of the classified objects in the area 

M.P.10. Drop the clutter in a designated container at a predetermined location with success rate > 

90% 

For M.P.2. the fall requirement is to clean up a 20m² room with a dozen ball-sized objects within 

30 minutes and we achieved a toned-down version of it. Also, for M.P.10 we were able to go to 

the container using only odometry with reasonable position accuracy. We will utilize AprilTags in 

the future to reset the odometry.  

 

Half of the requirements were achieved using the integrated system which validates the robustness 

of each subsystem. Individual subsystems that helped achieve the requirements are perception, 

manipulation, planning and control.  
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6.2 System Description 

 

 
Fig 8. Fully integrated CuBi 

 

Figure 8 shows the completed assembly of CuBi that we used for our demonstration. The 

robot has the Turtlebot 3 Waffle Pi as its mobile base. The base has manipulator fitted on the top 

layer and has Intel RealSense and Hokuyo lidar mounted on it. It has a PCB for power distribution 

and an OpenCR controller that is used for the mobility of robot. The system is complete and 

functional, and we will improve the design for robustness and performance in the coming semester.  

 

 
Fig 9. State machine 

 The state machine that is depicted above is used by CuBi to perform its entire operation. 

When CuBi is turned on it goes on to ‘search mode’ when it performs a 90 degree sweep in either 
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direction till it detects an object. Once an object is detected, CuBi switches to ‘pick-up object 

mode’ when it moves to the goal pose, picks up the object. Then in the ‘drop-off mode’ it goes to 

the home position to drop the picked object on the tray. Then it resets to the home position and 

starts searching for an object.  

 

6.2.1 Mobile Base 

 

We have performed trade studies on various available off-the-shelf mobile robot platforms, 

as well as the option to build our own mobile base from scratch. Then we chose the TurtleBot 3 

Waffle Pi as our mobile base platform. The main reason to select this platform is the high-

modularity design and capability to be easily modified and integrated with other components.  

 

During the past semester, we have finished the assembly of the entire robot. The base is 

powered by two Dynamixel XM430 motors with a differential drive steering mechanism with two 

caster wheels on the back. Dual large capacity Li-Po batteries are mounted on the base to power 

the system, ensuring at least 1 hour running time once fully charged. In the middle layer, an 

OpenCR microcontroller board is installed to control the chassis motors. It has an embedded IMU 

onboard, and continuously sends fused IMU and wheel odometry information to the onboard 

computer through a serial port. On the top layer, we have mounted the manipulator, the NVIDIA 

Jetson TX2 onboard computer, and the power distribution PCB that we designed.  

 

Currently, both software and hardware components of all other subsystems have been fully 

integrated together with the mobile base. The base can be controlled either by using a remote 

joystick, or by receiving velocity commands sent from other nodes through ROS. 

 

  
Fig 10. Top and bottom layer of the base 
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Fig 21. Middle base layer and PCB used in CuBi 

 

 

6.2.2 Manipulation 

 

Manipulation subsystem is a crucial aspect of our project since our goal is to create a task-

specific robot. This led us to design and fabricate a manipulator arm from scratch rather than using 

an off-the-shelf manipulator. We decided to use caging mechanism for gripping as it generalizes 

grasping for a wide range of objects. Caging is a grasping strategy where an object’s mobility is 

restricted using the end effector. The below figure depicts the design of the manipulator. 

 

                
Fig 11. Manipulator design 
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The manipulator is actuated by a pair of Dynamixel AX-12A motors for the gripper and a 

pair of Dynamixel MX-106 motors for the arm, making it a 4-DOF manipulation system. Each 

paddle is half the size of the tray which minimizes the possibility of the object getting stuck. The 

links are made up of 80/20 extrusion aluminum bars, and the brackets and tray are 3D-printed. We 

calculated a maximum payload of 500g for this manipulator.  

   

 

6.2.3 Perception 

 

 
Fig 12. Perception visualization 

 

Perception is used to sense the environment and to identify different objects. A stereo 

RGBD camera is used for obtaining rich visual RGB data for classification, as well as depth and 

point cloud for size and distance estimation. Combined information is used to estimate the size, 

pose and type of object. A combination of techniques such as geometric vision, learning-based and 

probabilistic methods are used to classify objects into two categories: objects to pick and obstacles 

to avoid. Figure 12 shows how are perception pipeline works in real-time. Currently, classical 

vision techniques and PCL library is used to process the point cloud. A region of interest is 

cropped, noisy points are removed, RANSAC plane segmentation is performed, followed by 

clustering of remaining objects on ground. A 3D bounding box is fitted around each detected object 
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and the pose is estimated to classify them according to threshold criteria of position and size. 

Finally, object tracking is applied to uniquely identify these objects over time. To complement 

geometric features, learning based methods with additional labeled or synthesized data will be 

used. This will also aid in obstacle detection. A list of detected objects with their absolute positions 

in the map (calculated with the help of relative positions with respect to the robot) will later be 

maintained and utilized by the planner for navigation.  

 

6.2.4 Planning & Control  

 

Given a goal position, CuBi’s motion is defined as follows: 

● Orient such that CuBi faces the target point 

● Move in the x-direction to reach the target point  

● Rotate till CuBi reaches the target orientation 

 

Planning and control subsystem roughly consists of three layers. The outermost layer interacts 

with the vision subsystem and receives the object pose. The middle layer consists of the state 

machine as depicted in figure 9. Once the middle layer receives the object position, using the 

odometry data to get CuBi’s position, it computes the relative error between the current position 

and the goal. This error is sent to the last layer which uses a PID controller to publish velocities to 

the base.  

 

In addition to the control of the base, the state machine also interacts with a node that controls 

the Dynamixel motors of the manipulator. The manipulator has a fixed set of configurations - 

moving, pick-up, and drop-off. The entire pipeline is integrated using Robot Operating System 

(ROS). The availability of ROS packages for Dynamixel motors and the Turtlebot base proved 

very beneficial to our cause.  

 

It is to note that the maximum range till which CuBi operates is limited by the range of the 

vision system as CuBi does not perform any sort of exploration or global planning as of now.  
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6.3 Modeling, Analysis, Testing 

 

As a proper system engineering design process, we have been doing a lot of modeling, 

analysis and testing while designing and implementing our system.  

 

Specifically, for the perception subsystem, we modeled the objects to pick up based on 

size, which is specified in our system functional requirements. We then implemented and fine-

tuned our computer vision algorithm to classify the objects accordingly, with outlier rejection.  

 

For the mobile base subsystem, first we validated our maximum traction that the chassis 

motors and wheels can provide by testing the robot with payload on different ground surfaces, 

such as smooth indoor floor surface and carpets. We then adjusted the weight distribution of the 

system, in order to avoid slipping on smoother surfaces. 

 

We also evaluate the accuracy of wheel odometry, by comparing the reported value to the 

actual distance measured by hand that the robot travelled, to make sure that the amount of 

odometry drift was within the range specified in our performance requirements. 

 

For the grasping subsystem, we designed, tested and iterated multiple generations of the 

paddle design of various length, roughness and shape. Half size of the tray as the paddle length 

was proven to be the most robust for grasping. Moreover, we estimated the maximum payload 

required for each joint of the manipulator, and chose motors based on the calculated torque 

required. 

 

For the electronics system, we calculated the power consumption of all the onboard 

components. Given the 1 hour running time as one of the performance requirements of our system, 

we then calculated the battery capacity needed and installed dual batteries based on that. 
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6.4 SVD Performance Evaluation 

 

The high-level goal for our Spring Validation Demonstration (SVD) was that CuBi had to 

find toys randomly placed within a radius of 1.2m and drop them off in a box that was right behind 

it. This required CuBi to be a fully integrated system. 

 

 

 
Fig 13. Set-up of the SVD.  

 

Our test set included several plastic toys in the shape of fruits. The fruits varied in size ranging 

from a strawberry fruit to a pear. They were plastic and very light weight. They would also roll if 

they were pushed.  

 
Fig 14. Examples of toys in our test set. 
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Drop-off 
Area 
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Our metric for success was counting the number of toys in the box at the end of 25 

minutes. If there were three or more toys, then the SVD would be considered a success. We were 

able to pick up all five toys in a bit over 10 minutes. In doing this, we also achieved our 

secondary goals listed below:  

 

a. Detect a toy and calculate its pose relative to CuBi 

b. Approach a toy within 2 cm 

c. Pick up one toy on the tray 

d. Lift the tray (with a toy inside) up from the ground. 

e. Return to the start position 

f. Drop a toy on the ground  

 

During our Spring Validation Experiment, we were able to perform the test several times 

as we were able to pick up 5 objects in about 10 minutes. During the first test, our team would 

place the toys and during the second test, we asked the evaluators to try to break our system.  

 

Our system would always detect the toys. However, 5% of the times we would miss them 

when approaching them. This was because we currently only use the one frame to determine the 

object’s pose and there may be some jitter. In the future, we will use the information about the 

object’s detected pose over several frames. In terms of picking up objects, we were able to pick up 

our test set objects over 95% of the time. Our system would only fail if the object got stuck on the 

lip of the tray. This would cause on overload in the Dynamixel motors. Nevertheless, most of the 

times CuBi would still be able to carry the object even though it was never actually lifted on the 

tray. Overall our system was robust and since the encore, every time we tested it, we passed our 

targeted requirements.  

 

We also had time to test objects outside of our scope like phones, computer mouse, white 

board markers among other items. We successfully picked up two white board markers which were 

placed right by each other. We were able to pick up the mouse when approaching it from specific 

directions, otherwise it would fail. We also had difficulty detecting phones potentially due to the 

reflection on the screen.  
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6.5 Strong/Weak Points 

 

Strong points: 

 

One of the aspects which makes the system robust is our 

accurate object detection and pose estimation algorithm. It is very 

good at filtering out what is not clutter and the number of false 

positives is close to zero. We tested at Cyert at the end of the semester 

and it was able to detect even toys which had holes within them like 

the one in figure 15.  

 

In addition, CuBi’s caging strategy is very good at 

generalizing the objects we can pick up from the ground. Even though 

we had never tested with picking up small objects like markers, it was 

able to do so.  

 

Finally, CuBi has very clean assembly and wiring. This makes it very easy for us to charge 

the batteries or swap any necessary components. We have spent very little time debugging this 

aspect thanks to having all the components clearly labeled and visible.  

 

Need to be improved / implemented: 

 

One of the biggest aspects that needs to be improved is CuBi’s odometry drifts. After 

picking up 5 toys, CuBi is off by around 30º and 15cm. With this odometry drift, we will be unable 

to drop off 12 toys in the box and hence fail our FVD. Currently we are just using wheel encoders 

and the IMU, but in the future we are looking to fuse it with visual odometry. We also want to 

reset odometry whenever we reach the drop off location.  

 

Furthermore, CuBi is unable to pick up toys which are flat on the side that is touching the 

ground. The reason for this is they get stuck when trying lift the onto the tray. CuBi’s able to pick 

them up even though the toy is not on the tray, but the motors get overloaded. We can either use 

this as a grasping strategy by preventing the motors from overloading. Otherwise, we have started 

testing different finger designs to try and life the toys onto the tray and we are considering 

decreasing the thickness of the bottom part of the tray.  

 

 

 

 

 

 

Fig 15. Unseen toy tested at 

Cyert center 
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7. Project Management 

 

7.1 Work Breakdown Structure 

 

[✔] Completed   [🠆] Currently working   [ ⏺ ] Next semester 

 

1. Visual sensing and perception 

1.1. [✔] Sensor identification, calibration, setup and installation 

1.2. [✔] Object detection algorithm 

1.2.1. [✔] ROI identification and segmentation 

1.2.2. [✔] Size and pose estimation 

1.2.3. [✔] Object tracking 

1.2.4. [✔] False positive removal 

1.2.5. [✔] Geometry based classification 

1.3. [✔] Destination/ base identification algorithm 

1.4. [✔] Validation on toys 

1.5. [ ⏺ ] Obstacle detection algorithm 

1.6. [ ⏺ ] Data collection, labelling and fusion for learning based techniques 

 

2. SLAM 

2.1. [✔] Sensor(s) selection  

2.2. [✔] Initial 2D LiDAR SLAM 

2.3. [ ⏺ ] Multi-sensor SLAM 

2.4. [ ⏺ ] Implementation and integration 

 

3. Planning and navigation 

3.1. [ ⏺ ] Planning and navigation algorithm 

3.1.1. [ ⏺ ] Global path planning 

3.1.2. [ ⏺ ] Trajectory generation 

3.1.3. [✔] Local planner 

3.1.4. [ ⏺ ] Dynamic obstacle avoidance 

3.2. [ ⏺ ] Path optimization algorithm (research) 

3.3. [ ⏺ ] Learning based planning algorithms (research) 

 

4. Grasping 

4.1. [✔] Manipulator 

4.1.1. [✔] Grippers R&D: Trade studies, prototype drawing, and fabrication 

4.1.2. [✔] Actuation mechanism (arms and fingers) 
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4.1.2.1.  [✔] Selection and set up of motors and controller 

4.1.2.2. [✔] Validation of assembly on actual toys 

4.2. [🠆] Control algorithms for manipulator 

4.2.1. [✔] Control program for motors 

4.2.2. [✔] Target position identification 

4.2.3. [✔] Grasping strategy and trajectory planning 

4.2.4. [ ⏺ ] Validation with feedback  

4.2.5. [✔] Dropping  

4.3. [ ⏺ ] Storage and body 

4.3.1. [ ⏺ ] R&D: Trade studies, prototype and fabrication 

4.3.2. [ ⏺ ] Control program for motors 

4.4. [ ⏺ ] Learning for manipulation (research) 
 

5. Mobility 

5.1. [✔] Mobile base trade studies (E.g. payload, torque, turning radius) 

5.2. [✔] Modification of motors and actuators 

5.3. [✔] Microcontroller selection and programming 

5.4. [🠆] Odometry 

5.4.1. [✔] Wheel odometry 

5.4.2. [ ⏺ ] Multi sensor odometry and fusion 

5.5. [✔] Controller for mobility: algorithm and feedback mechanism 

5.6. [ ⏺ ] Improve mobility mechanism ( E.g. Mecanum wheels) 
 

6. Robot integration 

6.1. [✔] Electric and mechanical components integration 

6.1.1. [✔] Attachment and assembly of sensors, motors and actuators, battery, 

manipulator, jetson and microcontrollers 

6.1.2. [✔] Power management, electric circuit design and assembly 

6.1.2.1. [✔] Trade studies for suitable power source 

6.1.2.2. [✔] Calculate power consumptions for each component 

6.1.2.3. [✔] PCB design 

6.1.2.4. [✔] Wiring of all components 

6.2. [ 🠆 ] Software Integration 

6.2.1. [✔] Sub-Systems ROS implementation 

6.2.2. [✔] Robot urdf files 

6.2.3. [✔] System ROS Integration 

6.2.4. [✔] Communication protocols 

6.2.5. [ ⏺ ] Parallel processing / CUDA coding 
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7. Validation, testing and benchmarking 

7.1. [✔] Subsystem level 

7.2. [✔] System-level 

7.3. [✔] Battery consumption and duration 

7.4. [🠆] Non-functional / desired (e.g. mechanical and electrical safety, speed, noise) 

7.5. [🠆] Failure recovery 

7.6. [ ⏺ ] Improvements (E.g. pick challenging objects, grasping strategies) 

 

8. Project management 

8.1. [🠆] Team and work management 

8.2. [🠆] Schedule management 

8.3. [🠆] Cost management 

8.4. [🠆] Risk management 

8.5. [🠆] Resource management 
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7.2 Schedule 

 

 
Fig 16. Gantt chart 

 

Biggest Milestones:  

 

Oct. 1: Can carry several toys at once.  

Nov. 1: Explore, scan and create a 2D map for 90% of the reachable area in a room 

Nov. 15: Can successfully perform FVD with 90% accuracy 

 

After Nov.15, our focus will be to just make the system more robust. We will not create any new 

features in this time.  

 

Summary: 

 

We are ahead of schedule as we did not expect to have a fully integrated system which 

could autonomously perform a scoped down version of our FVD. This was achieved thanks to 

making the SVD more like the FVD. This increased our requirements for this semester, but this 

gives us more flexibility for next semester.  
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7.3 Test Plan 

 
Table 1. Progress review goals 

PR 

No. 

Test Description Metric 

7 Place five toys on the ground half a meter apart and half a meter 

in front of CuBi. Turn CuBi on. Have CuBi pickup all toys and 

reset odometry after every pickup using the position of the AR 

tag on the box.  

 

Subsystems:  

Perception (add visual odometry), Planning (reset odometry) 

Odometry drift 

less than 10 cm.  

 

8 Place two toys on the ground half a meter apart and half a meter 

in front of CuBi. Turn CuBi on. Have CuBi pickup both toys 

bring them to a desired location. Repeat three times.  

 

Subsystems:  

Storage Mechanism (where to place toys), Gripper Mechanics 

(how to place toy in storage) 

CuBi can carry 

several toys at 

once.  

9 Place two flat toys on the ground half a meter apart and half a 

meter in front of CuBi. Turn CuBi on. Have CuBi pickup both 

toys bring them to a desired location. Repeat three times.  

 

Subsystems:  

Gripper Actuation (not allow for overload of motors), Gripper 

Mechanics (change design) 

CuBi can pick up 

flat toys. 

10 Have CuBi follow 10 waypoints and place obstacles (chairs, 

large toys, feet, etc…)  between all of them.  

 

Subsystems:  

Local Planner (obstacle avoidance) 

Does not crash 

into any obstacle 

11 Manually create a map of the reachable space of a room. Allow 

CuBi to create a map of the room for 15 minutes and compare 

both manual and automatically created maps. 

 

Subsystems:  

Global Planner, Perception (SLAM) 

Intersection area 

between CuBi’s 

reachable map 

and ground truth 

is greater than 

90%. 
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12 Independent party will place 12 toys at predefined reachable 

areas and will turn CuBi on. All the toys which end up in the 

designated location will be considered picked up 

 

Subsystems:  

All 

Number of toys at 

the desired 

location at the end 

of 30 minutes. 

 

Fall Validation Demonstration 

 

Objective: 

 

Validate all subsystems of CuBi and their integration and to meet all the performance 

requirements.  

 

Location:  

 

Indoor open area near the RI commons on the 4th floor, Newell Simon Hall. It will have 

obstacles like chairs placed in the area. Area will be closed with walls created by furniture. 

 

Equipment: 

 

15 tennis ball-sized toys, CuBi, any necessary replacements for any major subsystems 

which are at high risk of breaking, a box, and an AprilTag. 

 

Setup: 

 

1. Third party places 15 toys in the designated area and can place obstacles as desired. There 

are no requirements as to where these objects are placed.  

2. Team CuBi will place an AprilTag at the starting location and this will designate where the 

toys will be placed by the end of the 30 minutes. 

3. CuBi is placed in the designated starting position. 
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Procedure:     

Table 2. FVD Procedure 

Step Description   Performance Measures   

1 CuBi must be able to traverse over carpets with 

thickness of 12mm or lesser. 

 

2 CuBi starts to explore the room and perform 

SLAM to build a 2D map of the room.  

90% of the reachable area should be mapped 

by the robot; validated using ground truth 

3 As SLAM is performed, CuBi also uses its 

perception pipeline to detect objects and classify 

them as pickable or obstacles and records their 

rough positions in current map. 

Classification error is less than 20% 

4 After building the 2D map, CuBi applies path 

planning to generate a traversable path through 

positions of objects, obstacles and drop off 

location, and achieve the desired poses. 

The error should be less than 10% of the 

desired configuration 

 

5 CuBi avoids slow-moving and stationary 

obstacles. 

Avoid 95% of the obstacles  

7

  

CuBi then uses its manipulator to pick up at least 

two objects off the ground. 

Manipulator should pick-up within 5 attempts 

8

  

CuBi should be able to pick most of the toys off 

the ground. 

At least 80% of the toys should be picked up 

by CuBi  

9 CuBi should be able to drop the clutter at the 

designated position marked with AprilTag 

accurately. 

The success rate of dropping should be more 

than 90%. Error is the difference in Euclidean 

distance between the AprilTag and the 

dropped toy’s location. The threshold for 

counting as a failed drop is 0.5m. 

10 CuBi should be able to clean up 20m² area in a 

reasonable time. 

The time should be within 30 minutes 
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Fig 17. Example test area for FVD 
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7.4 Budget 

 
Table 3. Budget 

Component Manufacture

r 

Part # Unit 

Price 

(USD) 

Quantity Total 

Cost 

Mobile Base TurtleBot TurtleBot 3 Waffle Pi 1399 1 1399 

RGBD Camera Intel RealSense D435i 199 1 199 

Computing 

Platform Nvidia Jetson TX2 599 1 599 

Laser Scanner Hokuyo URG-04LX-UG01 1115 1(Inventory) 0 

Servo Motor Dynamixel MX-106T 499 1(Inventory) 0 

Servo Motor Dynamixel MX-64T 299 1 299 

Servo Motor Dynamixel MX-28T 219 2 438 

USB-Serial 

Converter Dynamixel U2D2 50 2 100 

Connector Dynamixel 
ROBOTIS FR12- H101K Set 

33.9 2 67.8 

Connector Dynamixel 
ROBOTIS FR12- S101K Set 

23.9 2 47.8 

Battery Turnigy 5200mAh 3S 12C LiPo 40 4 160 

Misc Electronics Multiple Misc 200 1 200 

T Slot Aluminum 

Extrusion 

Zyltech 

EXT-2020-REG-1000- 10X 

7.99 10 79.9 

Aluminum 

Profile 

Connector 

PZRT 2020 Series 25.99 1 25.99 

     3615.49 

 

 

The total budget of the project is $5,000. Currently we have spent $3,615.49, which is 

72.3% of the total budget. However, we have already made most of the purchases for big ticket 

items, including the TurtleBot 3 Waffle mobile platform, Dynamixel servo motors and the onboard 

computer, which comprised most of our budget. Overall, the budget management is in a good 

status. 
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7.5 Risk Management 

 
Table 4. Risk table 

Risk 

ID 

Risk Type Description L C Mitigation 

1 Manipulator  Technical Design of the 

manipulation 

system should be 

robust to pick 

objects from 

ground 

5 2 Iteration and validation of 

manipulator design 

2 Privacy issues Technical People might be 

skeptical about 

putting a robot with 

camera at homes 

2 3 Blur people’s faces and 

perform edge 

computation 

3 Plane 

segmentation 

Technical Different surface 

textures for plane 

removal poses 

problem 

2 4 Combine RGB images 

with stereo point clouds 

4 Low-light 

conditions 

Technical Low-light or 

differing light 

conditions can 

affect vision 

algorithms 

4 3 Sensor fusion can help 

mitigate 

5 Dynamixel 

motors 

Technical Control of 

inventory 

Dynamixel motors 

is proving hard 

3 1 Troubleshoot with help or 

replace with other motors 

6 Auto-reset Technical CuBi might get 

stuck during 

operation requiring 

hard reset 

2 3 One-push button to 

perform hard reset 

7 Pickable objects 

together 

Technical Multiple objects 

might be together 

causing unintended 

actions   

2 4 Perform interactive 

perception of the 

environment 
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The above table lists the important risks that we anticipate encountering in our project. Out 

of all the risks, we have majorly dealt with risk ID: 1,2,5. For risk ID 1 which is manipulator might 

not be able to scoop objects, we were able to get good results for our test set objects. However, it 

cannot generalize for many objects. But this is expected since grasping is still an unsolved problem. 

Risk ID 5 has also reduced in number since now we have the experience of troubleshooting 

Dynamixel motors. We also purchase additional motors as backup in case if we can’t fix it. Risk 

ID 3 has not been updated since we did not test on many different floors. Risk ID 2 has been 

reduced because achieving blur of people’s faces is a comfortable task for the team. Risk ID 6 and 

7 have been added during after PDR.  

 

 
                              Fig 18. Risk Matrix at PDR                                              Fig 19. Risk Matrix after PDR  
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8. Conclusions 

 

Key Lessons Learned: 

 

● Working together more effectively saves tremendous amount of time for integration. Even 

if one person oversees a subsystem, they should make major decisions discussing with the 

rest of the team first. We have had several times were people have spent long hours 

designing a component to later realize would interfere with another subsystem. 

Furthermore, when integrating, it’s important to have everyone present, so that questions 

can be solved immediately.  

● Utilizing GIT branches and discuss before pushing code onto the robot. No matter how 

small the change, never push changes to the robot without testing. It is also important for 

us all to develop on separate branches, so that when debugging, we know exactly what 

changes were made.  

● Do not over commit for each progress review. We usually send ideal case scenarios as our 

progress review goals, but we should be a bit more conservative.  

● Reach a point where you can integrate everything as soon as possible to allow early and 

constant validation 

 

 

Goals for Fall Semester: 

 

● Environment exploration and mapping: currently all the toys were placed within the field 

of view of CuBi, so all it needed to do is sweep to find toys. Next semester we want CuBi 

to autonomously explore and find toys.  

● Robust odometry based on multi-sensor fusion: We currently are using wheel odometry 

and IMU for odometry. We will incorporate visual odometry too.  

● Advanced global path planning: We will create an algorithm to choose which toys to pick 

up and in which order. 

● Faster smooth trajectory following: To get a smooth movement of CuBi, we have penalized 

speed. It would be interesting to see how quick we can make CuBi without having it feel 

intimidating.  

● Dynamic collision avoidance: Perform collision avoidance in real-time.  

● Manipulator design improvement: Modify the design of the manipulator to better 

generalize to objects. The main aspect we are trying to fix is the ability to pick-up flat 

objects.  

● Failure detection & recovery mechanism: If CuBi fails, currently we need to reset it to start 

again.  
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