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Individual Progress 

This progress review was focused on implementing one possible pipeline for the 

obstacle detection subsystem. The goal of the obstacle detection pipeline is to detect any 

object in the camera scene range and attach a bounding box over it. The object detection 

pipeline then classifies the toys as objects that can be picked. Couple of approaches to 

obstacle detection were tried, ranging from point cloud detection to deep learning 

methods.  

The point cloud detection approach is as follows. The Intel RealSense ROS 

wrapper is used to publish the point cloud data of the scene. This is the raw point cloud 

data which needs to be processed. The processing and filtering steps are shown in the 

figure 1. This is achieved using Point Cloud Library (PCL). The ROS nodes were written 

in C++ for fast processing in real time.  

 

 

Figure 1. Point Cloud Data Processing Steps 

 The passthrough filter is used to filter along a specified dimension (x, y, and/or z) 

– that is, cut off values that are either inside or outside a given range. Voxel filter is done 

to down sample the dense input point cloud. The down sampling is done by taking a 

cuboid of user specified dimension in space and calculating the centroid of point clouds 

within the cuboid. This acts as a good approximation of the dense input which is 

expensive to process. Next, outliers are removed using Statistical Outlier Removal filter. 

This is performed by calculating the distance of neighboring points. A Gaussian 

distribution is then fit for the distances and a limit is set outside which the points are 

outliers.  

 Plane segmentation is done through RANSAC in which random points are 

selected, plane formed using those points, and inliers are calculated. The best estimate 

of a plane is the one with most inliers and it is removed. Now the processed point cloud 

is supposed to have only the obstacles. Clustering of this point cloud to determine each 

obstacle is done using Euclidean Clustering.  

 However, this implementation of obstacle detection did not work. The output point 

cloud was too sparse and thus, no obstacle could be observed. There are too many 

parameters involved and even after a considerable amount of tuning them it did not work.  

 I went on to the Deep Learning approach [1] that I had described in my previous 

ILR. In that approach a single 2D image is taken as an input and a 3D bounding box is 



regressed from the network as output. But after going through the implementation it was 

found that it worked only for specific classes of objects pertaining to the self-driving car 

industry, for example cars, pedestrians.  

 All the other Deep Learning networks like YOLO, SSD work only for 2D object 

detection. In that case the depth information is lost. One way forward was to use the 

stereo pair image from the RealSense camera, perform a 2D object detection, and use 

epipolar geometry to map it to the 3D point clouds. But it was beyond the scope of this 

PR and so we resorted to extending the object detection pipeline for obstacles too. 

Challenges 

 The biggest challenge during the point cloud implementation was the number of 

parameter tuning. Each filter had a user-defined parameter and tuning it affects the result 

in a huge way. Also, it was hard to obtain a general solution using a classical vision 

approach meaning the implementation had to be overfit to environment subject to the 

parameters. Environmental factors like lighting, floor color can break the algorithm 

resulting in sparse point clouds. Deep Learning techniques overcome a lot of these 

issues, but time was a constraint to extend the 2D detection to 3D. Had we used a 3D 

LiDAR, this issue would have been easier to solve owing to the abundant research and 

literature in that area. Industry and researchers alike tend to use LiDAR or fusion of 

multiple sensors for 3D detection.  

Teamwork 

    Jorge and I discussed about how once obstacles are detected and its bounding 

boxes estimated, its dimensions can be used to map the obstacle like filling an occupancy 

grid. We also discussed about estimating the 3D point cloud correspondences from a 

stereo pair image. Laavanye helped me with the point cloud implementation for obstacle 

as he had done a very similar approach for objects. And finally, he adapted that pipeline 

for obstacles too. Paulo and I had discussions over the local planning strategy after the 

traversable cells are obtained.  

Plans 

 Next step for me would be to align CuBi with respect to the container while 

dropping. This is to be done using AprilTag. CuBi needs to orient itself whenever it goes 

to dropping the toy in the box. For the team, integration of all sub systems is the critical 

aspect. Integration of exploration with planning and finally object picking is a huge task 

ahead of us and is going to get us very close to the final goal of our project. 
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