
 

 

 

 

Wholesome Robotics 
Conceptual Design Review 

Robot: Bruce 

 

 

 

 

 

 

 
Team E: 

Aman Agarwal 

Hillel Hochsztein 

Dung Han Lee 

John Macdonald 

Aaditya Saraiya 

 

Sponsor: Rivendale Farms 

Mentor: George Kantor 

Date: 8th December 2018 

   



Wholesome Robotics   
 

Contents 
1 Project Description....................................................................................................................... 1 
2 Use Case....................................................................................................................................... 1 

2.1 Narrative ............................................................................................................................... 1 
2.2 Graphical Representation ...................................................................................................... 2 

3 System Level Requirements ........................................................................................................ 5 
3.1 Functional Requirements ...................................................................................................... 5 
3.2 Performance Requirements ................................................................................................... 5 
3.3 Non-Functional Requirements .............................................................................................. 6 

4 Functional Architecture ............................................................................................................... 6 

5 System Level Trade Studies......................................................................................................... 7 
5.1 Robot Platform Trade Study ................................................................................................. 7 

5.2 Weeding Manipulator Trade Study ....................................................................................... 7 

5.3 SLAM Trade Study ............................................................................................................... 8 
5.4 Perception Algorithm Trade Studies ..................................................................................... 9 

5.4.1 Weeding Perception ....................................................................................................... 9 
5.4.2 Monitoring Perception ................................................................................................. 10 

5.5 Sensor Trade Study ............................................................................................................. 11 
6 Cyberphysical Architecture ....................................................................................................... 13 

7 Subsystem Descriptions ............................................................................................................. 14 
7.1 Robot Platform .................................................................................................................... 14 
7.2 Weeding Manipulator ......................................................................................................... 15 

7.3 SLAM ................................................................................................................................. 15 
7.4 Perception ........................................................................................................................... 15 

7.5 Sensors ................................................................................................................................ 16 

8 Project Management .................................................................................................................. 17 

8.1 Work Plan and Tasks .......................................................................................................... 17 
8.2 Schedule .............................................................................................................................. 18 

8.3 System Validation Experiments .......................................................................................... 20 
8.3.1 Spring Validation Experiments .................................................................................... 20 
8.3.2 Fall Validation Experiments ........................................................................................ 22 

8.4 Responsibilities ................................................................................................................... 24 
8.5 Parts List and Budgeting ..................................................................................................... 24 
8.6 Risk Management ............................................................................................................... 25 

9 References .................................................................................................................................. 25 
 

 

 



1 

 

 

1 Project Description 
Organic vegetable farming introduces several challenges for farmers in achieving high-

quality crops and high crop yield. Most notably, without artificial pesticides and herbicides, it is 

extremely challenging to control the invasion of pests and weeds into the crop beds. Pests may 

directly harm the crops by eating them or spreading diseases. Weeds pose an additional threat by 

depriving plants of nutrients and space. The longer an infestation goes unnoticed, the more difficult 

it becomes to control. Therefore, it is of the utmost importance for organic farmers to monitor their 

fields for weed and pest pressures in order to prevent more widespread damage. 

 

Robotic monitoring and weeding of organic vegetable farms pose a potential solution. 

Mitigating diseases and pests is very specific to each threat, and a robot which could handle every 

threat it encounters would be prohibitively complex. However, a robot which can automatically 

survey the field for disease and pest pressure, and deliver reports on disease and pest pressure to 

farmers so that they may respond in a timely and informed manner would deliver significant value 

to farmers. In addition, removing weeds from fields organically is very labor intensive, however, 

we believe that the task is not outside of the reach of a robot. A robot which could remove weeds 

when it encounters them would add significant value to organic vegetable farms. 

2 Use Case 
2.1 Narrative 
The robot will operate in three modes, there is a use case for each: 

Mapping 
On a sunny day, the technician brings the robot to the field, selects the mapping mode and 

places it at the start of the first row. The technician moves the robot manually (joystick controlled) 

through the field for the first time. The robot collects visual and location data. The user then moves 

the robot back to the barn and connects it to the docking station. Later the visual data is labeled 

manually to create a map of the location and the plants in each row. 

 

Monitoring 
On a sunny day, the user moves the robot to the field, selects the monitoring mode and 

places it at the start of the first row. The robot autonomously collects visual data from the field by 

autonomously shifting through the rows and not crushing plants while traversing through a row. 

After collecting data the robot reaches the starting point again from where the user moves the robot 

back to the barn and connects it to the docking station. The robot processes the data and provides 

insights to the user about pests/signs of pests/disease in the form of heat maps, location, and trends 

in pests. 

Weeding 
On a sunny day, the user moves the robot to the field, selects the weeding mode and places 

it at the start of the first row. The robot autonomously moves through the row, stopping when it 

detects weeds. The robot uses a weeding method to kill the weed around the brassica plants. 

Finally, after weeding the entire field, the robot traverses back to the starting point. The user moves 

the robot to the barn where it is connected to the docking station. The robot evaluates the work 

done and provides the user an update about the weed pressure and the weeding operations 

performed. 
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2.2 Graphical Representation 
Mapping Mode 
 

 
Figure 1 On a sunny day the user carries the robot 

to the field, selects the mapping mode and places it 

at the start of the first row 

 
Figure 2 The user moves the robot manually 

(joystick control) through the field for the first time 

 
Figure 3 The robot collects visual and location data 

while moving through the field. 

 
Figure 4 The user then carries the robot back to the 

barn and connects it to the docking station 

 

Figure 5 The visual data is labeled manually to create a map of the location and the plants in each row 
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Monitoring Mode 
 

 
Figure 6 On a sunny day the user carries the robot 

to the field, selects the monitoring mode and places 

it at the start of the first row 

 
Figure 7 The robot autonomously collects visual 

data from the field by autonomously navigating 

through the field and reaches back to the starting 

point 

 

 
Figure 8 The user carries the robot from the 

starting point back to the barn and connects it to 

the docking station 

 
Figure 9 The user then carries the robot back to the 

barn and connects it to the docking station 
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Weeding Mode 
 

 
Figure 10 Figure 10 On a sunny day, the user 

carries the robot to the field, selects the weeding 

mode and places it at the start of the first row. 

 
Figure 11 The robot autonomously moves through 

the row, stopping when it detects weeds 

 

 
Figure 12 The robot uses weeding method to kill the 

weed around the brassica plants. Finally, after 

weeding the entire field, the robot traverses back to 

the starting point 

 

 
Figure 13 The user picks up the robot from the 

starting point and carries it to the barn where its 

connected to the docking station 

 

Figure 14 The robot evaluates the work done and provides the user an update about the weed pressure and 

the work done 
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3 System Level Requirements 
3.1 Functional Requirements 

Table 1 Functional Requirements 

The Robot shall: 
FR1. Take input from the user  

FR2. Build a map of the field 

FR3.  Perceive drivable area during navigation 

FR4. Autonomously localize itself 

         FR4.1. Along Row 

         FR4.2. Correct Row 

FR5. Autonomously switch between rows of the field 

FR6. Collect visual data 

FR7. Identify weeds online 

FR8. Localize weed online 

FR9. Identify signs of disease 

FR10. Identify pests or signs of pests  

FR11. Kill weeds when plants are small 

FR12. Generate meaningful reports 

FR13. Communicate (reports) to users 

Note: FR connotes a Functional Requirement. 

 

3.2 Performance Requirements 
Table 2 Performance Requirements 

The Robot will: 
MR1. Take input from the user with 10 Hz signal rate 

MR2. Build a map of the field with <15% dimensional error in row width and length  

MR3. During navigation perceive drivable width of a row within -10% error bound 

MR4. Autonomously localize itself  

         MR4.1. In the correct row with 95% accuracy 

         MR4.2. Along row with mean error < 24in   

MR5. Autonomously switch between rows of the field with 80% success rate 

MR6. Collect visual data with 75% usable images 

MR7. Identify weeds online with false positive on plant < 5%, false negative < 30% 

MR8. Localize weed online with positional error w.r.t  the robot frame < 2in 

MR9. Identify signs of disease on plant with false positive <20%, false negative < 20% 

MR10. Identify pests and /or signs of pests with false positive <20%, false negative <20% 

MR11. Kill weeds when plants are small with 75% success rate 

MR12. Generate meaningful reports within 24hrs of collection  

MR13. Communicate (reports) to users within 1s of request 

Note: MR connotes a Mandatory Requirement, DR connotes a Desirable Requirement. 

 
Figure 15 Graphical Representation of Selected Performance Requirements 
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3.3 Non-Functional Requirements 
Table 3 Non-Functional Requirements 

The robot will: 
MN1.  Fit in the row of width 24in 

MN2. Accommodate various control modes via kill switch and joystick   

MN3. Be weather resistant at least IP 20 

MN4. Have sufficient battery capacity for a complete run of Rivendale brassica field 

MN5. Not damage plant during navigation 

MN6 Not damage plant during weeding 

DN1.  Have indicators for system health (sanity checks) 

DN2. Be easy to repair 

DN3. Fit in Hillel’s Subaru with 73.3 ft3 of cargo space 

Note: MN connotes a Mandatory Requirement, DN connotes a Desirable Requirement. 

 

4 Functional Architecture 
The functional architecture has been divided into three parts according to the selected 

mode. The first mode is the Manual Mapping Mode. Here a technician moves the robot through 

the field through manual control. The robot collects data during this time which is manually labeled 

to create a map. The second mode is the Weeding mode where the robot autonomously moves 

through the field using the localization and navigation blocks. It identifies and localizes weed and 

then attempts to kill them. In the end, a report is generated about the weeding done and is 

communicated to the user. The third mode is the monitoring mode, here the same navigation and 

localization blocks are utilized to navigate through the field. The robot collects visual data which 

it processes later to identify signs of pests and disease. In the end, meaningful reports are generated 

to communicate to the user information about the crop health.   

 

 
Figure 16 Functional Architecture 
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5 System Level Trade Studies 
5.1 Robot Platform Trade Study 
 The robot platform consists of the hardware required for mobility of the system including 

hardware and software. The platform will be used to mount the sensors and the manipulator and 

will traverse the field. The Robot Platform trade study aims to find an optimal platform for the 

system which will adhere to all relevant requirements of the system. 

Table 4 Robot Platform Trade Study [1] [2] [3] [4] (Parameters rated out of 5) 

Parameter Weight % Jackal Husky 4WD Rover Flipper Rover Robotanist 

Width of Robot 25 4 2 5 5 3 

Speed of Robot 10 4 2 5 3 4 

Lateral Stability 20 2 4 1 1 5 

Payload Capacity 25 2 5 3 3 4 

Run Time 5 5 2 3 3 5 

Wheel base 15 5 2 4 4 1 

Weighted Sum 100 3.3 2.95 2.93 2.81 3.44 

The criteria considered were the width of robot (to ensure the robot can fit in row 24” 

wide), lateral stability (to ensure that the robot does not topple while moving along a row), payload 

capacity (to ensure that the robot is able to carry the required sensor and manipulator payloads), 

speed of the robot (to ensure that the robot covers the required area in the given time), battery 

runtime (to ensure that the robot has enough power to do the required tasks for the entire brassica 

field on a single charge), and the robot’s turning radius (to ensure that the robot can switch rows 

with ease). Through the trade study, the Robotanist platform [5] was considered suitable for the 

project. 

 

5.2 Weeding Manipulator Trade Study 
The manipulator arm is essential for completion of the weeding task. In order to assess 

various manipulation techniques, we compared a few aspects of the different options and weighted 

the values of these benefits as they pertained to our project. For example, the stability of the 

manipulator, which corresponds to the manipulator's ability to remain in a single desired pose, is 

rather important for the operation of the weeding mechanism. Manipulators with shorter limbs or 

screw threading actuators were given a higher rating. Other metrics included the speed at which 

the mechanism would be able to move (a screw threading would move slower than a servoed joint) 

the size of the apparatus is relatively unimportant as it will be the only moving part other than the 

driving platform itself. The precision of the manipulator’s pose directly correlates to the success 

of the weeding operation, while the ease of use considers the degree of difficulty we will encounter 

trying to implement the system. Finally, the cost is always an important factor to consider. 
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Table 5 Weeding Manipulator Trade Study (Parameters rated out of 5)  
Weight 

(%) 
6 DOF 

arm 
Straddling 

Gantry 
Telescoping 3 

axis 
Telescoping 

shoulder joint 

Stability 20 3 5 2 1 

Speed 20 5 3 1 3 

Size 5 2 3 2 3 

Precision 20 5 4 3 2 

Price 20 1 5 5 3 

Ease of 

use 

15 1 4 5 3 

Value  3.05 4.15 3.05 2.4 

The straddling gantry is highly superior, but it presumes a specific type of driving platform. 

Specifically, there would need to be drive wheels in two adjacent travel rows and the robot would 

straddle the plants in between. Since this is not a possibility, we are left to choose between the 6 

DOF arm and the telescoping 3 axis configurations; however the cost of a 6 DOF arm was 

prohibitive relative to our funding, so we settled on the telescoping 3 axis configuration. 

5.3 SLAM Trade Study 
The SLAM trade study compared the state-of-the-art SLAM systems in order to choose an 

algorithm ideally suited for the mapping and localization of the robot in the rows of crops at 

Rivendale Farms. 

Table 6 SLAM Trade Study (Parameters rated out of 5) 

Parameter Weight 
(%) 

Visual Lidar 
Odometry (V-

LOAM) 

LSD 
SLAM 

ORB 
SLAM 

RTAB- 
Map 

Hector 
SLAM 

Kind of map generated 30 3 

Sparse 

4 

Semi-

Dense 

3 

Sparse 

5 

Dense 

3 

Sparse 

Sensors required and 

compatibility with pipeline 

20 5 5 5 2 3  

GPU requirements 10 5 5 5 5 5 

ROS Package availability 10 5 5 5 5 5 

Deviation from the desired 

trajectory in indoor 

environments 

30 3.74 3.92 2.89 1.39 5 

Value 100 4.022 4.376 3.76 3.317 4 

(*Note: The cost of the 3D LIDAR has not been included because of its availability in FRC and MRSD inventory) 

 A number of parameters were taken into account during this study which includes the kind 

of map generated (higher density maps are more robust to change and are therefore given higher 

weight), the number and cost of the required sensors, the GPU requirements, and ROS 

compatibility. Special consideration was given to the performance of the algorithms in outdoor 

environments. Accuracy in indoor environments has been considered a rough metric to estimate 

the efficiency of the SLAM algorithm because of the lack of research comparing the performance 

of these algorithms in an outdoor setting. A general understanding of the algorithms and previous 
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results from outdoor experiments were utilized to assess the potential performance in outdoor 

environments. Potential performance of the sensors in use for the algorithm has also been 

considered. For example, if the plant row does not provide a feature-rich environment, a ‘Direct’ 

SLAM approach will be preferred over a ‘Feature-based’ SLAM approach. 

 

 The algorithms considered were: LSD SLAM – a Direct Visual SLAM [6] approach for 

working in feature-less environments by directly tracking changes in photometric consistency over 

frames; ORB SLAM – a state of the art, feature-based Visual SLAM approach [7]; V-LOAM – a 

state of the art Visual SLAM approach which utilizes 3-D Lidar and Visual odometry to fuse 

information for SLAM [8]; Hector SLAM – an approach using 2D Lidar to generate a 2D map of 

the environment; RTAB Map – a method that uses both depth and RGB data (RGB-D) for SLAM 

[9]. Currently, LSD SLAM is considered most suitable for this project 

 

5.4 Perception Algorithm Trade Studies 
5.4.1 Weeding Perception 
 

 
Figure 17 A visual example of the problem we are trying to solve. Green prickly plants are weeds and red 

plants are the crops. 

 

The weeding perception problem is essentially broken down into (1) localization of the 

weed in the image frame (RGB, depth, or both) and (2) localization of the weed in the robot frame. 

 
Figure 18 High level breakdown of weeding perception 

Localization in Image 
One state-of-the-art approach to object detection involves using convolutional net based 

object detector to recognize weeds, such as a Single Shot Detector (SSD) architecture [10]. This 

architecture predicts object bounding boxes from feature maps at various scales. However, one 

source of error in this case is the image plane location error resulting from the discretization of the 
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boxes by the convolutional net, which is done in order to make training the net feasible. We can 

build an architecture suited to our application which predicts bounding boxes only at the scale 

expected from the camera intrinsics, extrinsics, and target weed size, with a discretization which 

will achieve our performance requirement of 2 inches maximum weed localization error. We can 

use pre-trained feature layers to generate feature maps in order to reduce the amount of training 

data needed. 

 

Another approach which does not discretize the space of object locations would be to use 

a semantic segmentation approach based on a fully convolutional network (FCN) [11] which 

produces an image segmentation where each segment has been labeled with an object class. This 

has the drawback of increased computational load. It is also possible to combine the two 

approaches, doing semantic segmentation only inside the predicted bounding boxes in order to get 

more accurate location estimates. In this can also use pre-trained feature layers to cut down on the 

amount of training data needed. 

 
Table 7 Comparison of various methods for localizing weeds in the image (Parameters rated out of 5) 

 
Weight (%) Image Segmentation 

+ Segment 
Classification 

CNN Semantic 
Segmentation 

CNN 
Object 

Detection 

Generalizability 30 3 5 5 

Real-time Operation 

Speed 

35 5 3 4 

Accuracy 35 3 4 4 

Total 100 3.7 3.95 4.3 

Localization in Robot Frame 

Once the position of the weed, and possibly a segmentation or bounding box is obtained, 

the position of the weed in 3D space must be obtained. One approach involves only a monocular 

camera. Using camera intrinsics and extrinsics, a ray can be traced from the image plane and 

intersected with the ground plane in order to compute a 3D location. While this approach is 

promising, the error in the estimation of the pose of the ground plane, and the divergence from the 

soil from an idealized planar model poses an issue. In order to mitigate this, a depth camera or 

lidar could be used to better estimate the ground plane or directly measuring the 3D position of the 

weed, once classified. The current direction is, therefore, to combine the depth and RGB 

information from an active lighting stereo camera in order to obtain a position estimate of the weed 

in 3D space. 
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5.4.2 Monitoring Perception 
Table 8 Monitoring Perception Trade Study (Parameters rated out of 5) 

Type Weight 
(%) 

Binary 
Segmentation 

Faster RCNN + 
GAN 

+ object tracker 

YOLO + GAN 
+ object 
tracker 

Detection 

Accuracy 

40 2.5 5 4 

Information 

Gained 

40 3 5 5 

Low Complexity 20 5 3 3 

Value  3.2 4.6 3.4 

The computer vision algorithm is essential for monitoring plant health regarding disease 

and signs of pests (such as holes). We compared a few aspects of the different options and weighted 

the values of these benefits as they pertained to our project. For example, the information gained 

corresponds to the size (measured in area) and prevalence (how many holes there are) of the 

damage. Generative networks are capable of segmenting while object trackers can maintain a 

reference to absolute numbers of disease/signs of pests.  Other metrics included the detection 

accuracy and implementation complexity. Note that since the computation is done offline, speed 

is not considered as a criterion. The Faster RCNN + GAN + Object Tracker turned to be the best 

choices as it has the highest detection accuracy while having the same score as YOLO in other 

criteria.  

5.5 Sensor Trade Study 
Table 9 Perception Sensor Trade Study 

Type Weight 
(%) 

Intel 
RealSense 

Custom made 
Active Lighting 
Stereo - Small 

Custom made 
Active Lighting 

Stereo - Tiny 

ZED 

Range Accuracy 10 5 4.5 4.5 4.5 

Generate Useful 

Data 

40 3 5 5 3 

Low min distance 10 4 5 5 3 

Low weight 20 5 4 3.5 5 

Robustness 20 5 4 3 5 

Value  4.35 4.6 4.49 4.05 

 

Assuming we are using a neural network for weeding and plant health perception, the 

quality of RGB-D data would directly affect the outcome of these tasks. It is assumed that weeding 

and plant health monitoring share the same sensor, and hence the trade study criteria must account 

for both modalities. We compared a few key aspects of the different sensor options and weighted 

the values of these benefits as they pertained to our project. For example, generating useful data is 

key to the success of this task, because there is a relatively limited amount of data available from 

the field; hence, sensors with active lighting have a great advantage. Other metrics included the 
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range accuracy, which would affect the accuracy of localization in weeding, and the minimum 

installation distance between target and sensor (this is usually demanded by stereo cameras). Since 

the sensor would be cantilevered the weight of the sensor is crucial, as heavier sensors could affect 

the stability of the overall robot platform. Although Intel Realsense is rather lightweight and has 

high range accuracy, it is subject to disturbances from sunlight; for this reason, the custom-made 

stereo camera with active lighting (tiny) is the optimal choice. 

 

Table 10 Mapping and Navigation Sensor Options 

Type Weight 
(%) 

3D LiDAR + 
IMU 

2D LiDAR + 
IMU 

Structured Light 
Camera + IMU 

Time of  Flight 
Camera + IMU 

Robustness 30 10 10 4 8 

Information 
Richness 

30 10 7 6 4 

Low post 
processing  

25 8 6 8 8 

Low cost 15 4 6 10 8 

Value  8.65 7.5 6.5 6.8 

 

After knowing the generating the map and planned out a global path, the navigation 

algorithm kicks in for the robot to follow the path and avoid hitting plants/obstacles. The quality 

of sensors supporting the navigation algorithm/mapping is essential to the success of this task. 

IMU sensor is a basic sensor that presents in all option to provide information of orientation and 

velocity. On top of that, we compared a few aspects of the different options of range/depth sensors 

and weighted the values of these benefits as they pertained to our project. For example, the 

robustness of sensors, which corresponds to the sensors’ ability to produce quality data under 

vibration, sun slight glare etc. Sensors that emit pulses to environment and compute distance based 

reflected pulses are more robustness to sun slight; the longer range that a sensor is able to work, is 

also captured in this criterion. Other metrics included the information richness that a sensor is able 

to provide (A LiDAR has a 360-degree field of view, and 3D LiDAR has additional vertical field 

of view on top of that). Low post processing is important for schedule to be met, the more 

straightforward a sensor is, it would be better. (2D LiDAR requires stitching). The cost is less of 

a issue since many of these sensors are available in inventory with fair amount of stock. 

The 3D LiDAR is far more superior to other options in that it provides rich information 

and is robust to environment changes (note that we do not consider working in rainy days, where 

LiDAR yield poor performance). Also there are ROS packages that supports 3D LiDAR directly 

to make life easier.  
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6 Cyber-physical Architecture 
 
 The following figure shows the overall cyber-physical architecture of the robot which has 

been primarily divided into four components which include User Interface, Processing, Sensing 

and Output. The cyber-physical breakdown of each subsystem has been done below.  

 
Figure 19 Overview of Cyberphysical Architecture 

 

In mapping mode, the robot is controlled using a joystick which provides control 

commands which are used by the drive base controller to drive the robot's motors and move it 

along the desired trajectory. A 3D LIDAR and camera are used to collect point cloud and image 

data which is stored as a ROS Bag file. The SLAM algorithm utilizes visual and location data to 

generate a map of the environment.  

 
Figure 20 Cyberphysical Architecture of Mapping Mode 

 

In monitoring mode, the robot uses a 3D LIDAR to perceive the row in which it is moving 

and the previously generated map file to localize itself in the row. Information from the localization 

algorithm is used by a high-level path planner. This path planner creates a trajectory which is 

utilized by the path follower which commands the robot’s drive base controller to move the robot. 

A camera is used to collect visual data and location data for monitoring and is processed offline. 
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A pest/disease classification algorithm is used to detect pest/signs of disease in the images. A 

meaningful report is created and presented to the user in a convenient way.  

 
Figure 21  Cyberphysical Architecture of Monitoring Mode 

 

In weeding mode, the robot uses a 3D LIDAR to perceive the row in which the robot is 

moving and the previously generated map file to localize the robot in the row. Information from 

the localization algorithm is used by a high-level path planner. This path planner creates a potential 

trajectory which is utilized by the path follower which commands the robot’s drive-based 

controller to move the robot. A camera is used to collect visual data and location data for detecting 

weeds in that particular row. After the weed is detected, the 3D location of the weed in the robot 

frame is provided to the weeding controller. The weeding controller drives the motors of the 

weeding mechanism and the operation is performed. Higher level mission logic is utilized to 

confirm the success of the operation.   

 
Figure 22  Cyberphysical Architecture of Weeding Mode 

7 Subsystem Descriptions 
7.1 Robot Platform 
 The robot platform consists of the hardware required for mobility of the system including 

hardware and software. The platform will be used to mount the sensors and the weeding 

mechanism and will traverse the field. The platform should have the required dimensions and 

dynamics to be able to traverse the brassica field with all the payload. It should also have the 



Wholesome Robotics  15 

 

 

required computational capacity for all the tasks requiring computation and finally should have 

sufficient energy stored for at least one complete run of brassica field run with any of the three 

modes. Currently, the Robotanist is chosen as the robot platform, if this fails then we will look into 

using the next most suitable platform which is the Husky. 

 

7.2 Weeding Manipulator 
The 3 axes telescoping arm will work as follows. Three linear actuators (either screw 

threading or perpendicular gearings) will be aligned in three orthogonal directions (X, Y, Z) and 

configured in series. Then, knowing the relative pose of the target location, a quick transform will 

find the coordinates in the manipulator’s frame, and the 3 axes’ actuators can begin to deploy 

towards the plants (most likely traveling in X and Y simultaneously, and then in Z, to prevent 

interference with plants). An alternative version would use two revolute joints controlled by servos 

to control the X-Y plane, and then a linear actuator in the z-direction, holding the end effector. 

 
Figure 23 Example of 3-axis Telescoping Arm [12] 

7.3 SLAM 
The main aim of the SLAM subsystem is to capture visual data and corresponding 

geometric information in order to generate a map of the environment. The map could be stored as 

a 2D occupancy grid or a 3D Octree in order to be accessed later during autonomous navigation. 

In ideal conditions, the map should be efficient and robust to change in lighting conditions. The 

robot uses the map as a reference for precise localization and to improve the navigation 

performance of the system. Currently, LSD SLAM is the algorithm which has been chosen as the 

required SLAM algorithm. However, LSD SLAM is known to being sensitive to the incorrect 

initializations conditions. A hybrid sensor fusion approach using 3D LIDAR and a Monocular 

camera called Visual Lidar Odometry and Mapping can be used in case visual data is not enough 

to generate reliable maps. The ORB SLAM algorithm will be utilized if the field is able to provide 

rich features to create a robust map. 

 

7.4 Perception 
 The monitoring perception subsystem will work as follows. The original image will be fed 

into a Faster RCNN algorithm for detection, which will generate bounding boxes with unique ids. 

The bounding boxes will be used to count the number of holes/diseased areas and they will flow 

into a conditioned Generative Adversarial Network for segmentation, which will quantify the size 

of the holes/disease on a leaf.  If the subsystem is too complicated or other development tasks take 

priority, the fallback version is to remove the object tracker. This would sacrifice the reference to 
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an absolute number of detected issues, which would probably be replaced by a relative metric such 

as the number of holes/per given area. 

 

Figure 24 process flow of perception subsystem 

The weeding perception subsystem consists of an SSD object detector architecture which 

predicts bounding boxes of weeds given a camera image. Depth information from the stereo 

camera will be combined with the bounding box to produce locations of weeds in the robot frame. 

If the resulting accuracy from this data-driven approach is not sufficient to achieve the performance 

requirements, an alternate approach would be to use graph-based image segmentation to separate 

weeds and ground, and then to discriminate between weed segments and other segments using a 

classifier such as an SVM. 

 

7.5 Sensors 

In order for our system to work reliably, a variety of sensors will be used. The specific 

sensor types and their purpose are described as follows. First, a ZED stereo camera will be used 

for localization as it provides self-computed visual odometry. Also, since outdoor environments 

are much more dynamic than indoors, QR code markers will be placed around over the field so 

that the robot can work more reliably. Second, an IMU and a 3D LiDAR sensor, will work together 

for navigation and avoid hitting any plants. Finally, we will use a custom-made stereo camera for 

the perception algorithms and localizing weeds. The camera is capable of emitting synchronized 

active lighting which can generate high quality, consistent data. The primary choice is the small 

stereo camera with casing, if that doesn’t work, the alternative would be the tiny stereo camera. 
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Figure 25 sensors and their purposes for the system 

8 Project Management 
8.1 Work Plan and Tasks 

The project has a large number of tasks that have to be completed. Below, the tasks are 

represented in terms of various major goals and their relevant subsystems. The first column 

represents the major goals, the next one determines the major subsystems and the third column 

defines the main tasks in every sub-system.  

 
Table 11 Work Breakdown Structure 

Weeding 

1.1 Weeding Mechanism 

1.1.1 Choose weeding mechanism 

1.1.2 Design Mechanism End Effector 

1.1.3 Design/Buy Mechanism Manipulator 

1.1.4 Design Mechanism Mount 

1.1.5 Fabricate End Effector 

1.1.6 Fabricate Mechanism and Mounts 

1.1.7 Test End Effector on field 

1.1.8 Test manipulator 

1.2 Weeding Perception 

1.2.1 Collect data 

1.2.2 Select & train object detector to output weed bounding box 

1.2.3 Select & train semantic segmentation algorithm to generate 

weed area 

1.2.4 Compute weed location from segmentation 

1.2.5 Integrate components and test end-to-end system 

1.3 Weeding Report 1.3.1 Generate heat map of weeds removed 

1.3.2 Generate time history of weed spread 

1.4 Weeding Integration and 

Testing 

1.4.1 Test combined movement of the end effector and manipulator 

1.4.2 Static weeding using manual control 

1.4.3 Static weeding using weed locations relative to the robot 

autonomously 

Monitoring 

2.1 Monitoring Perception 

2.1.1 Train object detector to output weed bounding box 

2.1.2 Train GAN or similar segmentation algorithm to generate weed 

area 

2.1.3 Compute the size of holes from segmentation 

2.1.4 Integrate components and test on data 

2.2 Monitoring Report 2.2.1 Generate Time History of disease 

2.2.2 Generate Time History of signs of pests 
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2.3 Monitoring Integration 

and Testing 

2.3.1 Identify signs of pests and location from Visual Data 

2.3.2 Identify disease and location from Visual Data 

2.3.3 Test on the field and modify 

Mapping 

3.1 Mapping Perception 

3.1.1 Choose map data structure (2D vs 3D) 

3.1.2 Develop custom ROS package for a particular situation 

3.1.3 Test mapping accuracy in a custom environment 

3.1.4 Test mapping accuracy in the field 

3.2 Localisation 

3.2.1 Test existing ROS localization packages 

3.2.2 Develop custom ROS package for a particular situation 

3.2.3 Test localization accuracy in a custom environment 

3.2.4 Test localization accuracy in the field 

3.3 Mapping Testing and 

Integration 

3.3.1 Select joystick 

3.3.2 Implement / select joystick driver 

3.3.3 Test basic operations. Eg: Turn left, Turn right and go straight 

3.3.4 Test data collection from Sensors 

3.3.5 Test map generation from collected data 

Miscellaneo

us 

4.1 Autonomous Navigation 

4.1.1 Implement drive base controller 

4.1.2 Determine drivable space / width area 

4.1.3 Create a data structure for global plan 

4.1.4 Generate global plan through rows (if necessary) 

4.1.5 Create local path plan 

4.1.6 Implement path following controller to follow the local plan 

4.1.7 Implement row transition path generation 

4.1.8 Test row following a performance in the field 

4.1.9 Test row switching performance in the field 

4.2 Communication 

4.2.1 Investigate Robotanist Wireless Communication (Inspiration) 

4.2.2 Integrate wireless communication hardware 

4.2.3 Setup wireless communication software 

4.2.4 Test wireless communication 

4.3 System 

Integration and Testing 

4.3.1 Purchase/assemble Robot Platform 

4.3.2 Test Robot Platform 

-Mechanical Hardware 

-Robot Computation Hardware 

-Robot Power Supply 

-Mobility Performance 

4.3.3 Design Sensor Mounts 

4.3.4 Fabricate Sensor Mounts 

4.3.5 Integrate Sensors to robot platform 

4.4 Management 

4.4.1 Manage Schedule 

4.4.2 Communicate with Rivendale Farms 

4.4.3 Manage Finances 

4.4.4 Manage Risk 

 

The project aims to complete the Mapping and Autonomous Navigation sub-systems by spring 

end while developing the Monitoring and Weeding subsystem which will be delivered in the fall 

the exact milestones are depicted in the Gantt chart. 
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8.2 Schedule 
During the spring semester, the primary focus will be getting the robot platform to work 

reliably. Hence tasks regarding the platform, such as navigation, mobility, mapping, and 

localization subsystems are of critical importance. These goals will be on a tight schedule since 

the platform is scheduled to be tested in mid-late March. Meanwhile, some other high-level goals 

such as the weeding manipulator and monitoring perception will be designed and developed 

simultaneously, but they will not be integrated until the fall semester. 

 
Figure 26 Gantt chart for the spring semester's work plan 
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Figure 27Gantt chart for the fall semester 

8.3 System Validation Experiments 
8.3.1 Spring Validation Experiments 

We have planned five validation tests in the spring of 2019 that are focused primarily on 

navigation. As such, their success criteria correspond to the navigation-related performance 

requirements. We have also tried to minimize the number of in-field tests required, to save on time 

and resources, so tests 3 through 5, which are primarily software systems, will be tested on pre-

recorded data. 

 

Test 1: In-Row Navigation 
Location: Rivendale Farms 

Equipment: Robot, 2 rows of plants 

Setup: 

• Place robot at the entrance to a row of plants, facing into the row 

• Robot has pre-generated map file 

Test: 

1. Power on the robot 

2. Establish connection to the robot 

3. Command the robot to traverse the row 

4. Robot navigates along the row 

5. Robot stops at end of row 

Success Criteria: 

• Robot fits in row (MN1) 

• Robot arrives at the far end of row  

• Robot does not crush or trample any plants (MN5) 

 

Test 2: Switch Row Navigation 
Location: Rivendale Farms 

Equipment: Robot, 3 rows of plants 

Setup: 
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• Place robot at entrance to a row of plants, facing out of the row 

• Robot has pre-generated map file 

Test: 

1. Power on the robot 

2. Establish connection to the robot 

3. Command the robot to switch rows 

4. Robot navigates to the beginning of the next row 

5. Robot stops at beginning of the row 

Success Criteria: 

• Robot arrives at the entrance to the second row in at least 4 out of 5 trials (MR5) 

• Robot does not crush or trample any plants (MN5) 

 

Test 3: Localization 
Location: Rivendale Farms 

Equipment: Robot, pre-recorded validation ROS Bag, localization performance measurement 

node 

Setup: 

• Load pre-recorded ROS Bag file with ground truth (from RTK GPS) onto robot 

Test: 

1. Power on the robot 

2. Establish connection to the robot 

3. Start performance measurement node 

4. Playback ROS Bag file and observe divergence of ground truth and the actual position 

5. Observe output of localization validation node at end of the run 

Success Criteria: 

• Robot is in the correct row with 95% accuracy, and within 24 inches along the row 

(MR4) 

 

Test 4: Row Perception 
Location: Rivendale Farms 

Equipment: Robot, pre-recorded validation ROS Bag, row perception performance 

measurement node 

Setup: 

• Load pre-recorded ROS Bag file with human-labeled ground truth 

Test: 

1. Power on the robot 

2. Establish connection to the robot 

3. Start performance measurement node 

4. Playback ROS Bag file and observe divergence of ground truth and actual measurement 

5. Observe output of row perception validation node at end of the run 

Success Criteria: 

• Robot perceives drivable width of row within -10% error bound (MR3) 

 

Test 5: Mapping Accuracy 
Location: Rivendale Farms 

Equipment: Robot, pre-recorded sensor data of full field traversal, manually generated map 
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Setup: 

• Load pre-recorded ROS Bag file with human-labeled ground truth 

Test: 

1. Power on the robot 

2. Establish connection to the robot 

3. Robot generates a map using pre-recorded sensor data of full field traversal 

4. Compare known location of visual markers with those of generated map 

Success Criteria: 

• The map has a maximum 15% dimensional error (MR2) 

 

8.3.2 Fall Validation Experiments 
Test 1: Pest/Disease Perception Test 
Location: Rivendale Farms 

Equipment: Robot, pre-collected and labeled dataset 

Test 

1. Power on the robot 

2. Establish connection to the robot 

3. Robot processes images and delivers a report on the number and location of plant 

problems (which problems will be decided later) 

4. Robot report compared to labelled dataset 

Success Criteria 

• Robot successfully identifies problems with less than 20% false positives or false 

negatives (MR9, MR10) 

• Robot successfully processes data at a rate faster than one field per 24 hours (MR 12) 

 

Test 2: Weeding Perception Test 
Location: Rivendale Farms 

Equipment: Robot, pre-collected and labeled dataset 

Test 

1. Power on the robot 

2. Establish connection to the robot 

3. Robot processes images and delivers a report on the number and location of plant 

problems (which problems will be decided later) 

4. Robot report compared to the labelled dataset 

Success Criteria 

• Robot successfully identifies weeds with false positive on plant < 5%, false negative < 

30% (MR7) 

• Robot successfully localizes identified weeds to positional error of <2” with respect to 

the robot’s frame (MR8) 

• Robot successfully processes data at a speed allowing for full coverage of field at robot’s 

weeding mode speed (MR7, MR8) 

 

Test 3: Mechanical Weeding Test 
Location: Rivendale Farms 

Equipment: Robot, a bed of plants with weeds present, labeled data for weed locations 

Setup: 
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• Place robot at plant bed, with weeding manipulator facing the bed 

Test 

1. Power on the robot 

2. Establish connection to the robot 

3. Robot records plant images 

4. Robot processes data online and actuates the mechanical weeder 

Success Criteria 

• Robot successfully removes 75% of weeds, by coverage area (MR 11)  

• Robot does not damage the plant (MN 6) 

 

Test 4: Monitoring Systems-level Test 
Location: Rivendale Farms 

Equipment: Robot, map file, brassica field 

Setup: 

• Place robot at the start of field 

Test 

1. Power on the robot 

2. Establish connection to the robot 

3. Robot autonomously navigates and localizes 

4. Robot captures images of plants 

5. Robot returns to the starting point 

6. Robot process images 

7. Robot generates and sends report 

Success Criteria 

• Robot does not damage plants (MN 5) 

• Robot generates report in under 24 hours from completion of the test (MR12) 

 

Test 5: Weeding Systems-level Test 
Location: Rivendale Farms 

Equipment: Robot, map file, 1 row of plants, human captured pictures of weeds in row 

Setup: 

• Place robot at the start of field 

Test 

1. Power on the robot 

2. Establish connection to the robot 

3. Robot autonomously navigates and localizes along 1 row 

4. Robot captures images of plants 

5. Robot process images 

6. Robot Mechanically weeds field 

7. Robot returns to the starting point 

8. Robot generates and sends report 

9. Human captured after pictures for the row are compared to before pictures 

Success Criteria 

• Robot does not damage plants (MN 6) 

• Robot removes at least 75% of weeds by coverage area (MR 11) 

• Robot generates report in under 24 hours from completion of the test (MR12) 
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8.4 Responsibilities 
Table 12 Breakdown of Project Responsibilities 

 John Dun-Han  Hillel Aman Aaditya 
1.1 Weeding Mechanism   1 2  

1.2 Weeding Perception 1 2    

1.3 Weeding Report 1  2   

1.4 Weeding Integration and 

Testing 
1  1   

2.1 Monitoring Perception 2 1   2 

2.2 Monitoring Report  1  2  

2.3 Monitoring Integration and 

Testing 
 1  1  

3.1 Mapping Perception  2   1 

3.2 Localization 2    1 

3.3 Mapping Testing and 

Integration 
   1 1 

4.1 Autonomous Navigation 2   1  

4.2 Communication 1    2 

4.3 System  

Integration and Testing 
  2 1  

4.4 Management 

SW 

Schedule 

Risk 

Management Communication 

ME 

Schedule Finance 

 

Note: 1 means ownership of the task, 2 means secondary responsibility. Tasks may have more than 

one “1” if the task has multiple aspects, for example, 1.4 has both hardware and software aspects, 

which are split between the two owners. 

8.5 Parts List and Budgeting 
We have not yet decided on a number of our parts, specifically the mechanical ones, as 

they require engineering design steps. We have ballparked a number of costs, based on our current 

understanding of the system and informed estimations of individual component costs. The final 

cost exceeds our MRSD budget, however, some of the items are in MRSD’s inventory, and will, 

therefore, be cheaper. We also have additional funding available from both our sponsor, Rivendale 

Farms, and our mentor George Kantor. 
 

Table 13 Parts List and Budget 

Part Purpose Qty Unit Cost Total Cost 

Velodyne Lidar 16 Beams (VLP-16) Navigation 1 $3,999.00 $3,999.00 

IMU 3DM-GX5-25 Navigation 1 $1,500.00 $1,500.00 

ZED stereo camera Localization 1 $549.00 $549.00 

Vmarkers Localization 100 $0.05 $5.00 

Custom-made stereo camera Monitor/Weeding 1 - - 

Nvidia 1080 GPU Monitor/Weeding 1 $800.00 $800.00 

Cow catcher material not damage plant 1 $250.00 $250.00 

Sensor mounting material mount sensor    

Wifi dongle communication 1 $25.00 $25.00 
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Wifi Router communication 1 $100.00 $100.00 

Robot Platform - Robotanist Platform 1 - - 

stepper/servo motor Weeding Manipulator 4 $250.00 $1,000.00 

Metal limbs (rails, bearings, etc) Weeding Manipulator 3 $200.00 $600.00 

Weeding tooling Weeding Manipulator 1 $200.00 $200.00 

 

8.6 Risk Management 
The process of creating the Work Breakdown Structure enabled us to identify certain 

critical risks which could hinder the progress of the report. Each risk has been categorized and 

assigned labels of low, medium, or high for both their possibility and their impact on the project. 

Finally, a number of mitigation steps have been proposed to resolve each risk. 

Table 8 Risk management 

 
Risk Risk 

Category 
Possibility Impact Solution 

1 Unavailability of testing 

locations during winter. 

Scheduling 

Risks 

High High Create artificial testing ground/ 

Utilize pre-recorded data from the 

farm 

2 Poor weather during 

testing time  

Scheduling 

Risks 

Low Medium Avoid testing in bad weather. 

Implement basic waterproofing. 

3 Required sensors not 

arriving on time  

Scheduling 

Risks 

Low Low Borrow sensors from Field 

Robotics Centre (FRC) 

4 Wide scope because of 

monitoring and weeding 

Scheduling 

Risks 

Medium Medium De-scope parts of weeding/ 

monitoring which have a bigger 

impact on schedule 

4 Teammates overwhelmed 

by school work/ 

assignments 

Scheduling 

Risks 

High Medium Schedule conservatively with 

adding time buffers 

5 Breaking of critical 

sensors/ subsystems 

Management/ 

System level 

Risks 

Low Medium Borrow sensors from other teams/ 

Field Robotics Centre 

6 Lack of communication 

leading to masking of 

critical problems with 

subsystems 

Management/ 

System Level 

Risks 

Low  Medium Have regular stand-ups to ensure 

critical problems are resolved. 

Incorporate breakout during 

regular meetings 

7 Lack of in-field training 

data for perception 

algorithms 

Design Risks High High Use GAN architecture (known to 

require ~100s of examples) 

Leverage datasets available online 

Use data augmentation 

8 Design of weeding 

mechanism 

Design Risks Low Medium Reduce the weeding problem to 

simpler situations. 
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9 Inability to localize in the 

environment using pure 

vision 

Design Risks Low Medium Incorporate prior knowledge 

about the layout of the farm 

10 Damaging plants during 

operations 

Design Risks Medium High Design safety features/ conduct an 

immediate review meeting 

 
9 References 
 

[1]  "Jackal UGV - Small Weatherproof Robot - Clearpath", Clearpath Robotics, 2018. 

[Online]. Available: https://www.clearpathrobotics.com/jackal-small-unmanned-ground-

vehicle/. [Accessed: 09- Dec- 2018]. 

[2] "Husky UGV - Outdoor Field Research Robot by Clearpath", Clearpath Robotics, 2018. 

[Online]. Available: https://www.clearpathrobotics.com/husky-unmanned-ground-vehicle-

robot/. [Accessed: 09- Dec- 2018]. 

[3] "4WD Rover", Rover Robotics, 2018. [Online]. Available: 

https://roverrobotics.com/products/4wd-rover/. [Accessed: 09- Dec- 2018]. 

[4] "Flipper Rover", Rover Robotics, 2018. [Online]. Available: 

https://roverrobotics.com/products/flipper-rover. [Accessed: 09- Dec- 2018].  

[5] T. Mueller-Sim, M. Jenkins, J. Abel and G. Kantor, "The Robotanist: A ground-based 

agricultural robot for high-throughput crop phenotyping," 2017 IEEE International 

Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 3634-3639. 

[6]  D. Caruso, J. Engel and D. Cremers, "Large-scale direct SLAM for omnidirectional 

cameras," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems 

(IROS), Hamburg, 2015, pp. 141-148. 

[7] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM: A Versatile and Accurate 

Monocular SLAM System," in IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-

1163, Oct. 2015. 

[8] J. Zhang and S. Singh, "Visual-lidar odometry and mapping: low-drift, robust, and 

fast," 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, 

WA, 2015, pp. 2174-2181. 

[9] M. Labbé and F. Michaud, "Online global loop closure detection for large-scale multi-

session graph-based SLAM," 2014 IEEE/RSJ International Conference on Intelligent 

Robots and Systems, Chicago, IL, 2014, pp. 2661-2666. 

[10] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu and A. Berg, "SSD: Single 

Shot MultiBox Detector", 2018.  

[11] E. Shelhamer, J. Long and T. Darrell, "Fully Convolutional Networks for Semantic 

Segmentation," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

39, no. 4, pp. 640-651, 1 April 2017. 

[12] J. Kerns, "Interview: KISS Principles Work for Robots, Too", Machine Design, 2018. 

[Online]. Available: https://www.machinedesign.com/robotics/interview-kiss-principles-

work-robots-too. [Accessed: 09- Dec- 2018]. 

 


