
INDIVIDUAL LAB REPORT 1

February 15, 2019

John Macdonald

Wholesome Robotics, Team E

Teammates:
Aman Agarwal
Aaditya Saraiya
Hillel Hochsztein
Dung-Han Lee

Contents

0.1 Motors and Sensors Lab . 2
0.1.1 Individual Progress . 2
0.1.2 Challenges . 3
0.1.3 Teamwork . 4

0.2 Team Project . 4
0.2.1 Individual Progress . 4

0.2.1.1 Project Management . 4
0.2.1.2 Engineering . 5

0.2.2 Challenges . 8
0.2.3 Teamwork . 9
0.2.4 Plans . 9

0.3 Appendix A: Motors and Sensors Lab Code 10
0.3.1 motor_sensor.ino - Client . 10
0.3.2 MotorSensor.cfg - Server . 17
0.3.3 server.py - Server . 18

0.4 Appendix B: Quiz . 20

1

2

Figure 1: The GUI running my personal laptop.

0.1 Motors and Sensors Lab

0.1.1 Individual Progress

I took on the role of designing and implementing the GUI as well as integrating the
various software components. We initially held a meeting in which we extracted system
requirements from the prompt and agreed on work distribution. I drafted an initial
architecture separating these tasks into software modules which could be assigned to
individual members. The software was split into separate modules for: (1) the GUI Server,
(2) the GUI Client, (3) Servo control, (4) Stepper control, (5) DC Motor control, (6)
reading the temperature sensor, (7) reading the ultrasound rangefinder, (8) reading the IR
rangefinder, and (9) reading the slot sensor. The GUI server was implemented as a Python
program on my personal computer, whereas components (2) - (9) were implemented on
an Arduino Mega as separate files, each with its own header. I wrote the initial versions
as the header files to define the interfaces, as well as dummy implementations to build
the initial framework.

I worked with team members on revisions to the interfaces as needed, and worked
with each team member to integrate their code into the system.

On the GUI server side, I used the dynamic_reconfigure ROS package to build a
GUI which sent ROS messages to the Arduino using rosserial. On the GUI client side,

3

I implemented ROS subscribers with callbacks to update the system state in respose to
GUI events (e.g. adjusting the position setpoint for the stepper motor).

I also implemented ROS publishers using rosserial on the Arduino side to send the
current sensor state to the server. These could be visualized using the rqt_plot ROS
package.

0.1.2 Challenges

We faced a number of challenges. Firstly, when we set software sprint goals for the sprint
starting January 27th and ending Feburary 10th, we underestimated the amount of work
the motors and sensors lab would require. This led directly to a difficulty balancing
the time requirement of the team project with the lab. In an attempt to meet both
sets of goals, I settled for a less comprehensive set of interfaces than I would have liked,
which led to a poorly designed architecture. This allowed a sleep-deprived team to stum-
ble into a number of bugs during integration, such as forgetting to call an appropriate
init_dc_motor function before attempting to use the motor functions. This would have
been avoided with an object-oriented design patter, in which, it would be impossible to
call methods on the motor without first calling the constructor.

We also interpreted the design document to require a number of features which we
later realized the course instructors did not care about, such as the motors and sensors
running in parallel. We could have avoided a great deal of effort spent trying to get
the sensors and motors to run in parallel without conflicts if we had realized this was
not a requirement earlier. In particular, the temperature sensor sampling function used
originally (provided by the manufacturer) caused a delay of nearly one second. This
caused running this sensor cause problems with other components, most notably the
ultrasound sensor which used a sliding window average. Aman had to switch this sensor
to analog and determine his own transfer function in order to make this sensor work
in parallel, additional effort which could have been saved if requirements were better
understood initially and we had designed the system appropriately.

ROS, especially rosserial, was used in an attempt to make the lab work more relevant
to our project, which in theory would help us gain relevant experience to further our
progress on the team project. While ROS itself was not an issue, rosserial in particular
added additional work since every topic which we published or subscribed to required
an additional callback function. In addition, rosserial added complexity and unintuitive
behaviors, such as resetting the Arduino when it failed to communicate with the server.

4

A simple space separated and newline terminated list of values sent between the server
and client probably would have been just as effective. In retrospect, attempting to make
the lab relevant to our team project actually decreased the amount of time available for
the project, and simply trying to get the lab completed sooner so that we could return
to team project work would have been wiser.

0.1.3 Teamwork

The work was divided as follows:

1. John: Integration & GUI

2. Aman: DC motor & temperature sensor

3. Aaditya: DC motor & IR sensor

4. Hillel: Servo & slot sensor

5. Dung-Han: Stepper & ultrasound sensor

0.2 Team Project

0.2.1 Individual Progress

0.2.1.1 Project Management

Firstly, in my role as the software team manager, I decided that using Agile project
management was an absolute necessity in order to make progress under the uncertainty
associated with what is essentially a new product development program. We began our
first software spring on January 27th, and completed it on February 10th. While I aimed
to use Jira as a project management tool, skepticism from the team (which has never
used Jira), resulted in us using GitHub Projects, shown in Figure 2 as an alternative for
now. We aimed to individually evaluate tools such as Jira or Trello in the meantime.

While the mechanical team consisting of Hillel and Aman was resistant to introducing
Agile as well, we agreed on having standup twice weekly on Mondays and Thursdays in
order to facilitate communication and ensure continued progress. Aman joined us for our
first software sprint, which I believe was very good for team communication. I hope to
see the workflows of the mechanical and software teams merge over time.

5

Figure 2: The software team’s Kanban board on GitHub.

0.2.1.2 Engineering

My work focused on the navigation subsystem, depicted in Figure 3. I am responsible
for processing a fully registered pointcloud, outputted from Aaditya’s SLAM system,
and generating a simplified map representation. Additionally, I am responsible for then
having the robot localize within that map at run-time. This will be utilized by the
planning controls subsystem in order to complete a full navigation stack.

My first step was to analyze the data which we collected from Rivendale Farms, our
industry co-sponsor. I decided to focus on what was possible with the laser scan data.
Since we have limited access to the farm to collect large datasets, it is important that we
develop subsystems which can perform well under many environmental conditions, even
if we have not encountered them in the dataset. The lidar offers environmental invariance
to sunlight which other sensors, for example cameras, do not. I explored ways in which
the ground and plants could be segmented into ground points and plant points. I found
RANSAC plane fitting effective at this task, with results shown in Figure 4.

One requirement of our mapping system is that it must produce a map which is usable
as the plants grown over time. I therefore explored ways in which the pointcloud could
be reduced to a map representation which would be invariant to these changes. I wrote
a script to rotate and translate pointclouds into a consistent global reference frame using
the recorded RTK GPS and IMU data. The result is shown in Figure 5. I then fit a line
to the plant segments. In this case, the intended map representation would be a set of

6

Figure 3: Block diagram of the navigation subsystem. I am responsible for the
Perception group of blocks.

Figure 4: Segmentation of ground and plants with RANSAC.

7

Figure 5: Pointcloud of one row of brassica at rivendale farms, top-down view, gener-
ated from IMU and RTK GPS data.

8

Figure 6: Top: Histogram of laser points looking down the row of plants (into the page
is walking forward in the row, the y axis is up, and the x axis is lateral movement
between rows). Bottom: Histogram of 1e6 samples from generative gaussian mixture
model with 8 components fit to the row distrbution data.

lines representing rows, and the robot would have to determine the center line of the row
it is currently in order to localize in real-time. This estimate of the robot position could
then be fused with e.g. odometery and IMU data in order to provide a state estimate.

I therefore then explored ways in which the laser scans could be used to determine
the center line of the current row. When visualizing the sensor data, looking down the
row, I recognized that the distribution of points seemed to approximiate a mixture of
gaussians. I thought that it could be possible to fit a gaussian mixture model to the
data in order to create a generative model. I could then use that model to compute a
sensor model providing P (z|x) for each sensor reading. By plugging that into a particle
filter, I could localize the robot. I implemented such a mixture model, shown in Figure 6.
The generative model does quite a good job of approximating the distribution of sensor
readings, which was super exciting and very encouraging!

0.2.2 Challenges

However, utilizing my generative model in order to localize the robot has proven to
be challenging. I first decided to compute the probability P (z|x) with the knowledge

9

of the angle and azimuth of the laser marginalized out i.e. without incorporating the
knowledge that each reading must lie on a particular line. My first issue related to
computing the joint probability of all the sensor measurements (i.e. laser scan points).
Multiplying thousands of numbers less than 1 together naturally causes the result to go to
zero quite quickly; this was solved by changing to computing log (P (z|x)) instead, whose
individual components can be summed instead of multiplied. However, the output of this
function is strange. Where I would expect to see a maximum, I instead have a minimum.
Furthermore, I do not have one single peak, in reality, there is a diagonal line through
the (y,θ) space which has roughly equal probability (the y-axis translates between rows,
not along rows.). I need to further investigate the source of these issues if I am to use
this function.

Additionally, due to underestimating the amount of work in the motors sensors lab,
I failed to reach my initial sprint goal of implementing the sensor model with a particle
filter. This was disheartening and a bit embarrassing. I hope to meet my goals in the
future in order to maintain good team culture and morale.

0.2.3 Teamwork

I mainly collaborated with Dung-Han Lee (DHL), who suggested to use log probability
instead, thus solving my numerical instability issue; as well as Aaditya in my efforts to de-
sign an appropriate localization scheme. In particular, I am communicating closely with
Aaditya in order to work out a suitable map representation and overall mapping nav-
igation scheme. Aaditya is investigating lidar odometry-based approaches, which I find
fascinating. DHL’s inital results on object detection semantic segmentation have also
been encouraging. Aaditya, DHL, and I have met with several members of George Kan-
tor’s lab as a team in order to gain insights from previous agricultural robotics projects
with similar goals.

I have additionally discussed how sensors might optimally be mounted with Aman,
who is working on the robot platform, and to a lesser extent with Hillel, who is working
on the weeding mechanical subsystem.

0.2.4 Plans

I plan to implement a particle filter in the coming week and use this as a framework to
compare a number of sensor models. In this way, I can select the best possible localization
approach. I’m looking forward to an exciting semester of robotics!

10

0.3 Appendix A: Motors and Sensors Lab Code

0.3.1 motor_sensor.ino - Client

This was the file on the Arduino responsible for receiving commands from the GUI server
and sending them to the appropriate modules, as well as sending sensor updates to the
ROS server.

#include <ros.h>

#include <std_msgs/Bool.h>

#include <std_msgs/Float32.h>

#include <std_msgs/Int32.h>

#include <std_msgs/String.h>

#include "ultrasound.h"

#include "ir.h"

#include "temp.h"

#include "slot.h"

#include "dc_motor.h"

#include "stepper.h"

#include "servo.h"

volatile bool motors_enabled = true;

unsigned long last_motor_enable_time = 0;

int motors_enabled_button_pin = 20;

int slot_pin = 6;

// Debounce pararmeter

const unsigned long delay_time = 300;

void debounce(volatile unsigned long* last_change_time, void (*func)()) {

unsigned long current_time = millis();

unsigned long delta = current_time - *last_change_time;

if ((current_time - *last_change_time) > delay_time) {

(*func)();

*last_change_time = current_time;

11

}

}

void toggle_motors_enabled() {

motors_enabled = !motors_enabled;

ros_log("Toggle motor enable");

}

void toggle_motors_enabled_debounced() {

debounce(&last_motor_enable_time, &toggle_motors_enabled);

}

ros::NodeHandle nh;

std_msgs::Float32 temp_msg;

ros::Publisher temp_pub("temp", &temp_msg);

float temp;

std_msgs::Float32 pid_out_msg;

ros::Publisher pid_out_pub("pid_out", &pid_out_msg);

float pid_out;

std_msgs::Float32 pid_in_msg;

ros::Publisher pid_in_pub("pid_in", &pid_in_msg);

float pid_in;

std_msgs::Float32 ultrasound_msg;

ros::Publisher ultrasound_pub("ultrasound_dist", &ultrasound_msg);

float ultrasound_dist;

std_msgs::Float32 ir_msg;

ros::Publisher ir_pub("ir_dist", &ir_msg);

float ir_dist;

std_msgs::Bool slot_msg;

ros::Publisher slot_pub("slot", &slot_msg);

bool slot;

12

std_msgs::Float32 dc_speed_msg;

ros::Publisher dc_speed_pub("dc_speed", &dc_speed_msg);

// Logging

std_msgs::String log_msg;

ros::Publisher log_pub("log", &log_msg);

void ros_log(const char* str) {

log_msg.data = str;

log_pub.publish(&log_msg);;

}

void ros_log(double num) {

sprintf(log_msg.data, "%f", num);

log_pub.publish(&log_msg);;

}

// Mode

enum Mode { GUI = 0, servo_ir = 1, stepper_ultrasonic=2, dc_vel = 3, dc_pos =

4, dc_slot = 5, dc_temp = 6};

Mode mode = servo_ir;

// Mode subscriber

void mode_cb(const std_msgs::Int32 msg) {

mode = msg.data;

ros_log("Changed mode");

}

ros::Subscriber<std_msgs::Int32> mode_sub("mode", &mode_cb);

// Stepper motor

struct stepper_data stepper;

int stepper_gui_setpoint = 0;

void stepper_pos_setpoint_cb(const std_msgs::Int32 msg) {

ros_log("got stepper request");

stepper_gui_setpoint = msg.data;

}

13

ros::Subscriber<std_msgs::Int32>

stepper_pos_setpoint_sub("stepper_pos_setpoint",

&stepper_pos_setpoint_cb);

// Servo motor

struct servo_data servo;

int servo_gui_setpoint = 0;

void servo_pos_setpoint_cb(const std_msgs::Int32 msg) {

servo_gui_setpoint = msg.data;

ros_log("got servo request");

}

ros::Subscriber<std_msgs::Int32> servo_pos_setpoint_sub("servo_pos_setpoint",

&servo_pos_setpoint_cb);

// DC motor

struct dc_motor_data dc_motor;

// DC motor mode subscriber

void dc_motor_mode_sub(const std_msgs::Int32 msg) {

if (msg.data == 0 || msg.data == 1) {

dc_motor.mode = msg.data;

}

}

// DC motor setpoint

int dc_motor_gui_pos_setpoint = 0;

void dc_pos_setpoint_cb(const std_msgs::Int32 msg) {

dc_motor_gui_pos_setpoint = msg.data;

ros_log("got setpoint for pos dc motor");

}

ros::Subscriber<std_msgs::Int32> dc_pos_setpoint_sub("dc_motor_pos_setpoint",

&dc_pos_setpoint_cb);

// DC motor setpoint

int dc_motor_gui_vel_setpoint = 0;

void dc_vel_setpoint_cb(const std_msgs::Int32 msg) {

dc_motor_gui_vel_setpoint = msg.data;

14

}

ros::Subscriber<std_msgs::Int32> dc_vel_setpoint_sub("dc_motor_vel_setpoint",

&dc_vel_setpoint_cb);

void setup()

{

/* Serial.begin(9600); */

/* Serial.println("begin"); */

pinMode(motors_enabled_button_pin, INPUT);

nh.initNode();

nh.advertise(log_pub);

nh.advertise(temp_pub);

nh.advertise(ir_pub);

nh.advertise(ultrasound_pub);

nh.advertise(slot_pub);

nh.advertise(pid_out_pub);

nh.advertise(pid_in_pub);

nh.advertise(dc_speed_pub);

nh.subscribe(mode_sub);

nh.subscribe(dc_pos_setpoint_sub);

nh.subscribe(dc_vel_setpoint_sub);

nh.subscribe(dc_pos_setpoint_sub);

nh.subscribe(dc_vel_setpoint_sub);

nh.subscribe(stepper_pos_setpoint_sub);

nh.subscribe(servo_pos_setpoint_sub);

// Sensor initialization

/* init_ultrasound(); */

init_temp();

init_ir_dist();

init_slot(slot_pin);

/* */

15

/* */

init_servo(&servo);

init_stepper_motor();

init_dc_motor(&dc_motor);

attachInterrupt(digitalPinToInterrupt(motors_enabled_button_pin),

toggle_motors_enabled_debounced, RISING);

}

unsigned long last_send_time;

void loop() {

/* Serial.println("loop"); */

// Get sensor values

temp = get_temp();

ultrasound_dist = get_ultrasound_dist();

ir_dist = get_ir_dist();

slot = get_slot(slot_pin);

// Publish data

temp_msg.data = temp;

temp_pub.publish(&temp_msg);

ultrasound_msg.data = ultrasound_dist;

ultrasound_pub.publish(&ultrasound_msg);

ir_msg.data = ir_dist;

ir_pub.publish(&ir_msg);

slot_msg.data = slot;

slot_pub.publish(&slot_msg);

if (mode == GUI) {

if (motors_enabled) {

handle_servo_position(servo_gui_setpoint, &servo);

stepper_GUI_control(stepper_gui_setpoint);

}

16

} else if (mode == servo_ir) {

// Control servo with IR

int angle;

if (ir_dist > 15.0) {angle = 180;}

if (ir_dist < 15.0) {angle = 0;}

handle_servo_position(angle, &servo);

/* Serial.println("ir_dist:"); */

/* Serial.println(ir_dist); */

} else if (mode == stepper_ultrasonic) {

stepper_with_ultrasonic();

} else if (mode == dc_vel) {

Setpoint = (float) dc_motor_gui_vel_setpoint;

dc_motor.mode = velocity;

handle_dc_motor(&dc_motor);

pid_out_msg.data = (float) OutputNet;

pid_out_pub.publish(&pid_out_msg);

dc_speed_msg.data = (float) speedMot;

dc_speed_pub.publish(&dc_speed_msg);

} else if (mode == dc_pos) {

dc_motor.mode = position;

SetpointPos = (float) dc_motor_gui_pos_setpoint * (756. / 360);

ros_log("position mode");

Setpoint = 0;

handle_dc_motor(&dc_motor);

dc_speed_msg.data = (float) speedMot;

dc_speed_pub.publish(&dc_speed_msg);

pid_in_msg.data = (float) InputPos;

pid_in_pub.publish(&pid_in_msg);

pid_out_msg.data = (float) OutputPos;

pid_out_pub.publish(&pid_out_msg);

17

} else if (mode == dc_slot) {

if (slot) {

SetpointPos = 0.;

} else {

SetpointPos = 180. * (756. / 360);

}

dc_motor.mode = position;

handle_dc_motor(&dc_motor);

} else if (mode == dc_temp) {

Setpoint = (get_temp()-20) * 10.;

dc_motor.mode = velocity;

handle_dc_motor(&dc_motor);

pid_in_msg.data = (float) Input;

pid_in_pub.publish(&pid_in_msg);

}

delay(10);

nh.spinOnce();

}

0.3.2 MotorSensor.cfg - Server

This file was used by dynamic_reconfigure to display the appropriate widgets in the
GUI.

#!/usr/bin/env python

PACKAGE = "motor_sensor"

from dynamic_reconfigure.parameter_generator_catkin import *

gen = ParameterGenerator()

mode_enum = gen.enum([

gen.const("GUI_control", int_t, 0, "Motors controlled by GUI"),

18

gen.const("Servo_IR", int_t, 1, "Servo controlled by IR "),

gen.const("Stepper_Ultrasound", int_t, 2, "Stepper controlled by IR "),

gen.const("DC_vel", int_t, 3, "DC motor controlled by velocity"),

gen.const("DC_pos", int_t, 4, "DC motor controlled by position"),

gen.const("DC_temp", int_t, 6, "DC motor controlled by position"),

gen.const("DC_slot", int_t, 5, "DC motor controlled by slot")],

"An enum to choose operation mode")

gen.add("mode", int_t, 0, "Mode of operation which is edited via an enum", 1,

0, 6, edit_method=mode_enum)

control_enum = gen.enum([

gen.const("Position_control", int_t, 0, "Position control"),

gen.const("Velocity_control", int_t, 1, "Velocity control")],

"An enum to choose control method")

gen.add("dc_motor_pos_setpoint", int_t, 0, "Position setpoint for dc motor", 0,

0, 359)

gen.add("dc_motor_vel_setpoint", int_t, 0, "Velocity setpoint for dc motor",

100, 0, 150)

gen.add("stepper_pos_setpoint", int_t, 0, "Position setpoint for stepper", 0,

0, 359)

gen.add("servo_pos_setpoint", int_t, 0, "Position setpoint for servo", 0, 0,

180)

exit(gen.generate(PACKAGE, "motor_sensor", "MotorSensor"))

0.3.3 server.py - Server

#!/usr/bin/env python

import rospy

from dynamic_reconfigure.server import Server

from motor_sensor.cfg import MotorSensorConfig

from std_msgs.msg import Int32, Float32

19

class CfgServer(object):

def __init__(self):

rospy.init_node("motor_sensor", anonymous = False)

topics = [

(Float32, ’dc_motor_kP_vel’),

(Int32, ’stepper_pos_setpoint’),

(Int32, ’dc_motor_pos_setpoint’),

(Int32, ’servo_pos_setpoint’),

(Float32, ’dc_motor_kD_vel’),

(Int32, ’dc_motor_vel_setpoint’),

(Float32, ’dc_motor_kP_pos’),

(Float32, ’dc_motor_kI_pos’),

(Float32, ’dc_motor_kD_pos’),

(Int32, ’mode’),

(Int32, ’dc_motor_mode’),

]

self.pubs = {}

for typ, topic in topics:

self.pubs[topic] = rospy.Publisher(topic, typ, queue_size=2)

srv = Server(MotorSensorConfig, self.callback)

def run(self):

rospy.spin()

def callback(self, config, level):

for param in config:

if param in self.pubs.keys():

self.pubs[param].publish(config[param])

return config

if __name__ == "__main__":

s = CfgServer()

20

s.run()

0.4 Appendix B: Quiz

Task 4 (Sensors and Motor Control Lab) Quiz

1. Reading a datasheet. Refer to the ADXL335 accelerometer datasheet

(​https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf​) to answer the below

questions.

o What is the sensor’s range?

o The typical range is rated as +/- 3.6g and the minimum is rated as +/- 3g.

o What is the sensor’s dynamic range?

o DR = max / (noise floor). Since the noise floor is not listed, an experiment is needed first

in order to determine it.

o What is the purpose of the capacitor C​DC​ on the LHS of the functional block diagram on p. 1?

How does it achieve this?

o The capacitor acts as a low pass filter which reduces noise in the circuit. This is

accomplished though the time delay which is required to charge the capacitor. If there is

a spike in the signal, the capacitor will act as a damper, which will not immediately react

as time is required to charge the capacitor.

o Write an equation for the sensor’s transfer function.

o 0.3 * accel + 1.5 = voltage

o 0.3 * accel = voltage - 1.5

o accel = (voltage - 1.5) / 0.3

o accel = 3.3 * voltage - 5

o What is the largest expected nonlinearity error in g?

o 0.3% * full_scale = 0.003 * (3.6 * 2) = 0.216

o How much noise do you expect in the X- and Y-axis sensor signals when the sensor is excited at

25 Hz?

o The RMSE is given by ​noise_density * sqrt(BW * 1.6) ​= ​150 * sqrt(25 * 1.6) = 948.683 μg

o How about at 0 Hz? If you can’t get this from the datasheet, how would you determine it

experimentally?

o I could set the sensor on a tabletop, with the Z axis pointing down, at which point the X

and Y accelerations should both be zero. I would sample the sensor over some time

interval, use the transfer function to convert the voltage to acceleration, and then

compute the mean squared error of these samples given the known accelerations.

2. Signal conditioning

o Filtering

▪ What problem(s) might you have in applying a moving average?

o A moving average will introduce time delay to the signal.

▪ What problem(s) might you have in applying a median filter?

▪ A median filter will typically not produce a smooth output signal; this could be an issue

depending on the application.

o Opamps

https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf

▪ In the following questions, you want to calibrate a linear sensor using the circuit in Fig. 1 so

that its output range is 0 to 5V. Identify: 1) which of V1 and V2 will be the input voltage and

which the reference voltage; 2) the value of the reference voltage; and 3) the value of Rf/Ri

in each case. If the calibration can’t be done with this circuit, explain why.

● Your uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a 0V output and

1.0V should give a 5V output).

● 1) V1 = Vref, V2 = Vin

● 2) Vref = -3 V

● 3) Rf/Ri = 1

●

● Your uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V output and

2.5V should give a 5V output).

● Because the range of the input and output voltage is the same, the gain must be

1, however, this makes computing the offset impossible. Therefore this is not

possible.

Fig. 1 Opamp gain and offset circuit

3. Control

o If you want to control a DC motor to go to a desired position, describe how to form a digital

input for each of the PID (Proportional, Integral, Derivative) terms.

o I would use a an encoder which will produce a digital square wave as the motor turns. I

would connect the encoder to an interrupt pin on a microcontroller, and set the

interrupt to increment a counter. By counting the encoder ticks, I can determine the

position of the motor by dividing the count by number of encoder ticks by the ticks per

rotation. I would then have PID controller loop which computes each of the terms. By

subtracting the current position of the motor from the desired position, I can compute

error, which I would multiply by kP in order to get the P term. I will keep a running total

of the errors stored in an integral variable, which I will multiply by kI to get the integral

term. Finally, I will compute the change in error for every iteration and multiply this by

kD to get the D term.

o If the system you want to control is sluggish, which PID term(s) will you use and why?

o I would increase the P term, as the P term is directly proportional to error, and will

therefore result in a higher response when the measured signal deviates from the

setpoint.

o After applying the control in the previous question, if the system still has significant steady-state

error, which PID term(s) will you use and why?

o I will increase the integral term, because if there is error in the steady state, this will

cause the integral to rise, which will cause the integral term to rise in response to drive

the error to zero.

o After applying the control in the previous question, if the system still has overshoot, which PID

term(s) will you apply and why?

o I would increase the D term, because since the D term is proportional to the derivative

of error, the D term will act as a damper to reduce the rate of change of the output,

therefore slowing it down as it reaches the setpoint.

	Motors and Sensors Lab
	Individual Progress
	Challenges
	Teamwork

	Team Project
	Individual Progress
	Project Management
	Engineering

	Challenges
	Teamwork
	Plans

	Appendix A: Motors and Sensors Lab Code
	motor_sensor.ino - Client
	MotorSensor.cfg - Server
	server.py - Server

	Appendix B: Quiz

