
Autonomous 
Monitoring of Organic 

Crops 
Final Report 

 

 

 

 

 

 

 

 

 
 
Wholesome Robotics (Team E): 

Aman Agarwal 
Hillel Hochsztein 
Dung Han Lee 
John Macdonald 
Aaditya Saraiya 
 

Sponsor: Rivendale Farms 
Mentor: George Kantor 
Date: 13th December 2019  

 



 

1 Abstract 
This project focuses on developing a robotics solution for autonomous monitoring for            

organic farming at Rivendale Farms, Bulger PA. A four-wheel skid steered robot platform called              
the Robotanist [1] was utilized for this project. For autonomous navigation, two distinct             
approaches were utilized which include LIDAR row-perception and RTK GPS based fusion            
methods to achieve autonomous row-following and row-switching functionalities in outdoor          
environments. A CNN based plant health detection based on the UNet [2] architecture was              
developed to detect the presence of pests and diseases in a variety of plants from the Brassica                 
family. The model achieves the required 80% precision and recall for holes and fungus              
classification in a select variety of plants. An easy-to-use, interactive GUI has been developed to               
present geo-tagged image data associated with the classification. The salient features of the GUI              
include visualization support for multiple rows of data, color-coded graphics to show pest and              
disease levels, note-taking and allow farmers to change plant health detection results. We present              
results from various field trials performed at Rivendale farms to validate the robot’s             
functionalities.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Wholesome Robotics  
 

 



 

Contents 
2 Project Description 1 

3 Use Case 1 

3.1 Narrative 1 

3.2 Graphical Representation 1 

4 System Level Requirements 2 

4.1 Performance Requirements 2 

4.2 Non-Functional Requirements 3 

5 Functional Architecture 3 

6 System Level Trade-Studies 3 

6.1 Robot Platform Trade Study 3 

6.2 Perception Algorithm Trade Studies 4 

6.2.1 Monitoring Model (Spring) 4 

6.2.2 Monitoring Model (Fall) 5 

6.3 Sensor Trade Study 5 

6.4 Localization Algorithm Trade Studies 7 

6.4.1 SLAM Module (Spring) 7 

6.4.2 Localization Module (Fall) 7 

7 Cyber-physical Architecture 8 

8 System description and evaluation 10 

8.1 System/subsystem descriptions/depictions 10 

8.1.1 Autonomous Navigation 10 

8.1.2 Plant Health Monitoring 15 

8.1.3 Visualization 17 

8.2 Modeling, Analysis, and Testing 21 

8.3 Performance Evaluation 24 

8.4 Strengths and Weaknesses 25 

Wholesome Robotics  
 

 



 

9 Project Management 26 

9.1 Schedule 26 

9.2 Parts List and Budgeting 28 

9.3 Risk Management 29 

10 Conclusion 30 

10.1 Key Lessons 31 

10.2 Future Work 31 

10 References 33 
 

 

 

 
 

Wholesome Robotics  
 

 



 

2 Project Description 
Organic vegetable farming introduces several challenges for farmers in growing          

high-quality crops with high crop yield. Most notably, without artificial pesticides and            
herbicides, it is extremely challenging to control the invasion of pests and weeds into the crop                
beds. Pests may directly harm the crops by eating them or spreading diseases. The longer an                
infestation goes unnoticed, the more difficult it becomes to control. Therefore, it is of the utmost                
importance for organic farmers to monitor their fields for disease and pest pressures in order to                
prevent more widespread damage. 

Robotic monitoring of organic vegetable farms poses a potential solution. Mitigation of            
diseases and pests is very specific to each threat, and a robot that could handle every threat it                  
encounters would be prohibitively complex. However, a robot that can automatically survey the             
field and quantify disease and pest pressure, and deliver reports on disease and pest pressure to                
farmers so that they may respond in a timely and informed manner would deliver significant               
value to farmers.  

3 Use Case 
3.1 Narrative 

On a sunny day, the user moves the robot to the field, selects the monitoring mode and                 
places the robot at the start of the first row. The robot autonomously collects images from the                 
field by autonomously driving through the rows, being careful to not crush plants while              
traversing through a row. After collecting data, the robot returns the starting point, from which               
the user moves the robot back to the barn and connects it to the docking station. The robot                  
processes the data and provides insights to the user about pest and disease pressures in the form                 
of heat maps, location, and trends in pests. 
3.2 Graphical Representation 

 
Figure 1 On a sunny day, the user carries the robot 
to the field, selects the monitoring mode and places 

it at the start of the first row 
 

 
Figure 2 The robot autonomously collects images 
from the field by navigating through the field and 

returns back to the starting point 

Wholesome Robotics 1 



 

 

 

Figure 3 The robot collects visual and location data 
while moving through the field.

Figure 5 The user carries the robot from the 
starting point back to the barn and connects it to 

the docking station 

Figure 4 The user then carries the robot back to the 
barn and connects it to the docking station 

4 System Level Requirements 
We have updated our requirements in two notable ways. First, we have descoped             

weeding, so all requirements associated with weeding have been updated or removed            
accordingly. We also added requirements for the report generation, since we added an interactive              
GUI to visualize the results of field monitoring. 

4.1 Performance Requirements 

The Robot shall: 

Table 1 Performance Requirements 
Requirement Subsystem 
MR1. Autonomously localize itself Navigation 

MR1.1. In the correct row with 80% accuracy 
MR1.2. Cross track control error < 3 in within the row 

MR2. Autonomously switch between rows of the field with 80% success rate 
MR3. Collect visual data with 75% usable images Monitoring 
MR4. Identify signs of disease on plant with precision and recall > 80% 
MR5. Identify pests and /or signs of pests with precision and recall > 80% 

Wholesome Robotics 2 



 

MR6. Generate meaningful reports within 24hrs of collection Visualization 
MR6.1. Label row with plant name 
MR6.2. Label image with severity level 
MR6.3. Allow user to see and change the severity level 

Note: MR denotes a Mandatory Performance Requirement. 

4.2 Non-Functional Requirements 

The robot will: 

Table 2 Non-Functional Requirements 
Requirement Subsystem 
MN1.  Fit in the row of width 24in Platform 
MN2. Accommodate various control modes via kill switch and joystick  User Interface 
MN3. Have sufficient battery life to complete a run of Rivendale brassica field Platform 
MN4. Not damage plant during navigation Navigation 

Note: MN connotes a Mandatory Requirement, DN connotes a Desirable Requirement. 

5 Functional Architecture 
The functional architecture has been simplified to only a single monitoring mode. In this              

operation mode, the robot localizes itself in the field and then uses the location and a pre-built                 
map to navigate throughout the field. The robot collects images which it processes later to               
identify signs of pests and disease. In the end, reports are generated to communicate to the user                 
information about crop health. 

 
Figure 6 Functional Architecture 

6 System Level Trade-Studies 
6.1 Robot Platform Trade Study 

The robot platform consists of the hardware required for mobility of the system including              
hardware and software. The platform will be used to mount the sensors and the manipulator and                
will traverse the field. The Robot Platform trade study aims to find an optimal platform for the                 
system which will adhere to all relevant requirements of the system. 

 

Wholesome Robotics 3 



 

Table 3 Robot Platform Trade Study [1] [2] [3] [4] (Parameters rated out of 5) 
Parameter Weight % Jackal Husky 4WD Rover Flipper Rover Robotanist 
Width of Robot 25 4 2 5 5 3 

Speed of Robot 10 4 2 5 3 4 

Lateral Stability 20 2 4 1 1 5 

Payload 
Capacity 25 2 5 3 3 4 

Run Time 5 5 2 3 3 5 

Wheel base 15 5 2 4 4 1 

Weighted Sum 100 3.3 2.95 2.93 2.81 3.44 

The criteria considered were the width of robot (to ensure the robot can fit in row 24”                 
wide), lateral stability (to ensure that the robot does not topple while moving along a row),                
payload capacity (to ensure that the robot is able to carry the required sensor and manipulator                
payloads), speed of the robot (to ensure that the robot covers the required area in a given time),                  
battery runtime (to ensure that the robot has enough power to do the required tasks for the entire                  
brassica field on a single charge), and the robot’s turning radius (to ensure that the robot can                 
switch rows with ease). Through the trade study, the Robotanist platform [5] was considered              
suitable for the project. 

6.2 Perception Algorithm Trade Studies 

6.2.1 Monitoring Model (Spring) 

Table 4 Monitoring Perception Trade Study (Parameters rated out of 5) 

Type Weight (%) Binary Segmentation Faster RCNN + GAN YOLO + GAN  

Detection 
Accuracy 

40 2.5 5 4 

Information 
Gained 

40 3 5 5 

Low Complexity 20 5 3 3 

Value  3.2 4.6 3.4 

The computer vision algorithm is essential for monitoring plant health regarding disease            
and signs of pests (such as holes). We compared a few aspects of the different options and                 
weighted the values of these benefits as they pertain to our project. For example, the information                
gained corresponds to the size (measured in area) and prevalence (how many holes there are) of                
the damage. Generative networks such as Conditional GANs are capable of outputting a             
segmentation mask conditioned on an image input while object trackers can maintain a reference              
to absolute numbers of disease/signs of pests.  Other metrics included the detection accuracy and              
implementation complexity. Note that since the computation is done offline, speed is not             
considered as a criterion. The Faster RCNN + GAN turned out to be the best choice as it has the                    
highest detection accuracy while having the same score as YOLO in other criteria.  

Wholesome Robotics 4 



 

6.2.2 Monitoring Model (Fall) 

Table 5 Monitoring Perception Trade Study (Parameters rated out of 5) 
Type Weight (%) Unet Dilated Resnet InceptionV2 
Small Amount of   
Training Data 

50 5 3 2 

Easy to Implement 30 5 4 3 

Potential 
Performance 

20 4 4.5 5 

Value  4.8 3.6 2.9 

The model implemented in the Spring 2019 semester stagnated around 60% precision and             
recall despite numerous efforts. Therefore, some other architectures were taken into           
consideration, specifically Unet, Dilated Resnet, and InceptionV2. Since the dataset we created            
had only roughly 100 - 200 images available per plant, requiring a small amount of training data                 
is critical. Although larger networks usually have pre-trained weights available, they are mostly             
trained on common household and urban objects instead of agricultural images. In conclusion,             
Unet ended up being the best choice for this project due to its relatively small number of                 
parameters, therefore requiring fewer data and being easier to implement. 

 

6.3 Sensor Trade Study 

Table 6 Perception Sensor Trade Study 
Type Weig

ht (%) 
Intel 

RealSense 
Custom made 

Active Lighting 
Stereo - Small 

Custom made 
Active Lighting 

Stereo - Tiny 

ZED 

Range Accuracy 10 5 4.5 4.5 4.5 

Generate Useful 
Data 

40 3 5 5 3 

Low min 
distance 

10 4 5 5 3 

Low weight 20 5 4 3.5 5 

Robustness 20 5 4 3 5 

Value  4.35 4.6 4.49 4.05 

 

Assuming we are using a neural network for weeding and plant health perception, the              
quality of RGB-D data would directly affect the outcome of these tasks. It is assumed that                
weeding and plant health monitoring share the same sensor, and hence the trade study criteria               
must account for both modalities. We compared a few key aspects of the different sensor options                
and weighted the values of these benefits as they pertained to our project. For example,               
generating useful data is key to the success of this task, because there is a relatively limited                 
amount of data available from the field; hence, sensors with active lighting have a great               
advantage. Other metrics included the range accuracy, which would affect the accuracy of             

Wholesome Robotics 5 



 

localization in weeding, and the minimum installation distance between target and sensor            
(usually demanded by stereo cameras). Since the sensor would be cantilevered, the weight of the               
sensor is crucial, as heavier sensors could affect the stability of the overall robot platform.               
Although the Intel Realsense is rather lightweight and has high range accuracy, it is subject to                
disturbances from sunlight; for this reason, the custom-made stereo camera with active lighting is              
the optimal choice. 

Table 7 Mapping and Navigation Sensor Options 
Type Weight 

(%) 
3D LiDAR +   
IMU 

2D LiDAR +   
IMU 

Structured Light  
Camera + IMU 

Time of  Flight   
Camera + IMU 

Robustness 30 10 10 4 8 
Information 
Richness 

30 10 7 6 4 

Low post  
processing  

25 8 6 8 8 

Low cost 15 4 6 10 8 
Value  8.65 7.5 6.5 6.8 

 

After knowing the generating the map and planned out a global path, the navigation              
algorithm is used by the robot to follow the path and avoid hitting plants. The quality of sensors                  
supporting the navigation algorithm & mapping is essential to the success of this task. An IMU                
sensor is a basic sensor present in all options to provide orientation and angular velocity               
information. On top of that, we compared a few aspects of the different options of range/depth                
sensors and weighted the values of these benefits as they pertained to our project. For example,                
we compared the robustness of sensors, which corresponds to the sensors’ ability to produce              
quality data under vibration or glare from sunlight. In general, sensors that emit pulses to the                
environment and compute distance-based reflected pulses are more robust to sunlight. The range             
that a sensor is able to work is also captured in this criterion. Other metrics included the                 
information richness that a sensor is able to provide. For example, LiDAR has a 360-degree field                
of view, and 3D LiDAR has an additional vertical field of view on top of that. Low                 
post-processing requirements are important for the schedule to be met. In general, the more              
straightforward a sensor is to use, the better. 2D LiDAR, for example, requires stitching over               
time to generate 3D data. The cost is less of an issue since many of these sensors are available in                    
inventory with a fair amount of stock. 

The 3D LiDAR is far more superior to other options in that it provides rich information                
and is robust to environment changes. Note that in accordance with our project scope, we do not                 
consider performance on rainy days, where LiDAR is known to yield poor performance. Also,              
there are ROS packages that support 3D LiDAR directly to make implementation easier. 

 

Wholesome Robotics 6 



 

6.4 Localization Algorithm Trade Studies 

6.4.1 SLAM Module (Spring) 

During the Spring semester, we were initially considered using a full 3D SLAM pipeline              
to solve the outdoor localization problem for both in-row navigation and row-switching. During             
the Fall of 2018, direct SLAM methods such as LSD SLAM [4], state-of-the-art feature-based              
SLAM methods such as ORB SLAM [5] and appearance based methods such as RTAB-Map [7]               
were considered. However, we decided to move forward with testing the Lidar Odometry and              
Mapping (LOAM) package [6] in the Spring semester. As LOAM is a pure-LIDAR based              
approach and has been developed at CMU, it had the best support available for debugging.               
Hence, these factors played in LOAM being taken up for initial testing. The V-LOAM algorithm               
was dropped as an option as the package is closed-sourced and it currently being commercialized               
by Kaarta. Appearance-based and direct approaches such as LSD SLAM and RTAB-Map are             
unstable for outdoor environments due to drastic changes in lighting conditions over time. Table              
6 showcases the SLAM algorithmic considerations which were taken into consideration at the             
start of the Spring semester.  

Table 6 SLAM Trade Study (Parameters rated out of 5) 
Parameter Weight 

(%) 
LOAM LSD 

SLAM 
ORB SLAM RTAB- Map 

Robustness to outdoor 
environments 

30 4.5 3 4 3 

Sensors required and 
compatibility with pipeline 

30 5 5 5 2 

GPU requirements 20 5 5 5 5 

ROS Package availability 
and local 

20 4.33 3 4 4 

Value 100 4.716 4 4.5 3.3 
(*Note: The cost of the 3D LIDAR has not been included because of its availability in FRC and MRSD inventory) 

However, by the mid of March, the team concluded that a full 3D SLAM package was                
not required. In order to use the predefined structure of the farm environment, a particle filter                
model was developed. The particle filter utilizes a standard odometry based motion model as              
described in [8]. The particle filter has required desirable properties of describing multi-modal             
distributions by using importance sampling based approach to weigh different particles and            
converge to the best state estimate. A LIDAR row detection based sensor model was developed               
for the update step of the particle filter. This model was successfully used for row following and                 
switching in indoor environments with fake plants.  

6.4.2 Localization Module (Fall) 

During the Fall semester, the outdoor navigation in the farm provided a new set of               
challenges. For outdoor localization, the particle filter based model developed in the first             
semester did not work out of the box. Hence, the RTK GPS based navigation approach was                
considered. The RTK GPS based approach had the advantage of ideally providing cm level              

Wholesome Robotics 7 



 

precision. The robot_localization package could be used out-of-the-box without use of custom            
algorithm development. The EKF-UKF model is computationally less intensive as compared to            
the particle filter based sensor mode. However, the RTK GPS based method received low              
weights for the ease of outdoor testing due to previous difficulties in setting up the RTK GPS.  

Both the row detector + particle filter model and EKF + UKF based fusion approach was                
used from Mid October - Mid November. However, the row detector + particle filter model was                
given up during Mid November due to the computational complexity of the particle filter and the                
difficulty in debugging the filter on ROS Bags. A simple weighted cost function based approach               
based on a simple sensor and motion model was utilized to achieve successful row following. By                
the end of the project, the row detector + simple localizer as well the EKF + UKF based platform                   
were utilized to demonstrate different functionalities. The EKF + UKF based model was used to               
perform in-row navigation as well as row switching in the baseball field patch in CMU. Table 7                 
showcases the localization algorithmic considerations which were taken into consideration at the            
start  as well as last month of the Fall semester. 

Table7 Localization algrithms Trade Study (Parameters rated out of 5) 
Parameter Weight 

(%) 
Row Detector 

+ Particle 
Filter  

Row 
Detector 
+ Simple 
Localizer 

EKF + UKF 
based 
fusion  

Robustness to outdoor 
environments 

30 4 4 4.5 

Inherent accuracy of 
sensors involved 

20 4.7 4.7 4.5 

Computational complexity 15 4 5 4.5 

Ease of use for outdoor 
testing 

20 5 5 4 

Implementation complexity  15 4 4.5 5 

Value 100 4.34 4.565 4.475 

 
 
7 Cyber-physical Architecture 

The following figure shows the overall cyber-physical architecture of the robot which has             
been primarily divided into components which include User Interface, Processing, Sensing and            
Output. The high-level cyber-physical breakdown of each subsystem has been done below (the             
further breakdown is discussed as part of each subsystem). 

Wholesome Robotics 8 



 

 
Figure 7 Overview of Cyber-physical Architecture 

 

 
Figure 8 Cyber-physical Architecture of Navigation Subsystem 

The navigation subsystem is used for monitoring. We have implemented two separate            
navigation subsystems in parallel; a lidar-based one and an RTK-based one, to explore all              
options and compare performance. The lidar-based navigation inputs information from 3D           
LIDAR (Velodyne VLP16 Puck), an IMU, and a stereo camera (ZED). The IMU and LIDAR are                
interpreted by a row detector, which is fed into the localizer along with visual odometry from the                 
stereo camera in order to output the robot’s pose. For the RTK-based solution, the sensor data                
goes into the robot_localization node and which fuses sensor inputs from the RTK-GPS and IMU               
to provide a position estimate output. The map, consisting of GPS points at the beginning and                
end of each row, is passed through a global planner which outputs a trajectory. The robot’s pose                 
is then driven to the trajectory pose using a pure pursuit controller. 

The monitoring subsystem takes images from the robot’s active lighting stereo camera            
and passes it through a perception pipeline to identify signs of pests and disease. The pipeline                

Wholesome Robotics 9 



 

includes segmentation of holes and fungus via U-Net [1] which is fed into a threshold to generate                 
a disease and pest severity classification. 

 
Figure 9 Cyber-physical Architecture of Monitoring Perception Pipeline 

8 System description and evaluation 
8.1 System/subsystem descriptions/depictions 

8.1.1 Autonomous Navigation 

Overview 

The autonomous navigation sub-system has three major components, localization,          
planning and controls. The system has a map that is built once every season, after that during                 
autonomous navigation, the system gets sensor data which goes to the localizer. The localizer              
provides an estimate of the robot’s position. The map file generated before is used by the global                 
planner to build a global trajectory of the robot. Finally, the controller uses the trajectory               
generated and the current pose of the robot to provide the desired velocity of the robot which are                  
finally implemented by a low-level drive-based controller. 

We tried two approaches for navigation. The two approaches differed by the way we              
localized the robot. The first strategy, the Lidar Row Detection based Navigation strategy, used              
the inherent structure of the farm to simply the problem of localization. In this approach, a row                 
detector computes row lines from point clouds, and this is combined with visual odometry from               
the row detections. We had good results from this strategy inside the row, but the results were                 
not good outside it. Further, this strategy worked well only when the plants were big and point                 
cloud data from the plants was usable. This led us to try an alternative strategy where we fused                  
RTK GPS and other sensor inputs to localize the robot. This strategy works well irrespective of                
the growth stage of plants, position of the robot. However, it requires an RTK GPS base station                 
to be present and thus requires additional infrastructure. 

Wholesome Robotics 10 



 

Row Detection based Localization 

 
Figure 9 Architecture using Row Detections 

The row detector is responsible for translating 3D laser scans into row lines. We chose to                
use the Hesse normal form of a line, in which a line is represented by its normal n and                   
perpendicular distance to the origin d. Points r which lie on the line are therefore defined by r · n                    
= d. The normal n can equivalently be represented by θ = atan2(ny, n x) . This parameterization                
was chosen over the standard in order to represent vertical lines correctly and prevent numerical               
instability.  

 
Figure 10: Left: Row perception output with lidar points (white), segmentation of the ground (red), estimated 
row center line (blue), and global trajectory (yellow);  Right: Calculation of row line with eigenvectors v1and 

v2 , ground point mean x, row distance d and row normal n 

Row detection is accomplished by first using the orientation estimate in roll and pitch               
from the Xsens IMU to rotate the point cloud into a stabilized ground frame. Next, the ground                 
and plants are segmented by height and intensity of the laser returns. The ground in general                
should have a lower z-coordinate and lower intensity than the plant points. The position and               
orientation of the row is computed by projecting the points onto the ground plane (e.g. removing                
the Z coordinate in the ground-stabilized point cloud), and taking the orientation to be the               

Wholesome Robotics 11 



 

direction of the major axis of the pointcloud. This vector is computed by computing the SVD of                 
the covariance matrix of the points, and taking the eigenvector corresponding to the largest              
eigenvalue of the matrix v1 to be the direction of the row. The eigenvector corresponding to the                 
second-largest eigenvalue v2 is therefore normal to the direction of the row, and this vector is                
taken to be the opposite of the normal v2 = -n in the Hesse normal form of the row line. The                     
distance d is calculated by taking x · n the dot product of the normal n and the mean position x of                      
the points. This process is depicted in Figure 10; with the output shown on the left and the                  
process itself outlined on the right. 

 
Figure 11: Visualization of the ambiguity in position given a fixed position x along the row and two rows. 

There are two possible poses for each row. 

The localizer initializes its position at (0, 0, 0), assuming that the robot was roughly               
placed at the beginning of the first row, facing down the row. When localizer receives an                
incremental position update from VO, it applies this incremental update. When it receives a row               
detection, given the X coordinate of the current estimate, there are four possible positions and               
orientations of the robot, assuming the row detection in correct, as shown in Figure 11. It picks                 
the closest pose to the current pose to resolve the ambiguity. In this way, the location will “snap”                  
to the known position relative to the row lines in the map when they are visible, and the position                   
will be updated with VO in-between detections. 

RTK GPS based Localization 

Before we can do autonomous navigation, a map of the field needs to be built, we chose a                  
very simple map representation, i.e. the start and end GPS location of each row. These were                
collected using the map builder which collected outputs of the RTK GPS according to user input,                
this is presented visually in the flowchart below. 

 

Wholesome Robotics 12 



 

 
 Figure 12 Flowchart showing pipeline for map-builder 

Once the map is built, we make use of ‘robot_localization’ package to fuse the sensor               
readings from the RTK GPS and IMU using an extended Kalman filter to get an accurate                
estimate of the position and orientation of the robot. Although we initially tried fusing visual               
odometry from the ZED, we found that it was not required for our application as our robot moves                  
at relatively low speeds ranging from 0.2 to 1 m/s. Thus, the final implementation works by                
fusing data only from the RTK-GPS and IMU and provides an estimate of the robots position in                 
the entire six degree of freedom space, the reasons for the same will be covered in section 8.2. 

 
Figure 13 Flowchart showing entire pipeline for navigation using RTK GPS and IMU 

The robot_localization package runs three nodes to complete the localization process. 

The package runs 2 separate fusion algorithms, one running fusion between IMU and VO              
and other running fusion between RTK GPS and IMU. These separate nodes are required as GPS                
does not provide continuous measurement, further robot_localization makes use of three frames.            
First, is the ‘base_link’ frame which is the robot’s frame, the next is the ‘odom’ frame which is                  
the frame at the robot’s starting position, the position in this frame can be subject to drifts and                  
the ‘map’ frame which is a world fixed frame, the position in this frame need not be continuous                  
and can have discrete jumps. 

Wholesome Robotics 13 



 

Thus, the first fusion between VO and IMU provides transform from odom → base_link              
whereas the second fusion node provides transform between map → base_link however to             
ensure consistency in the TF tree, its published as a transform from map → odom frame. The                 
following figure represents the high-level architecture.  

  
Figure 14 Flowchart showing fusion pipeline of robot_localization 

Planning & Controls 

  
Figure 15 Flowchart showing planning and controls pipeline 

Planning sub-system 

The robot should start from a designated starting point, enter the first traversable row and               
then switch rows to go to the next one. It should repeat this process to cover all the rows in the                     
field. A coverage path planner was developed which identifies the order in which the rows in the                 
field should be traversed. The algorithm takes the input as the coordinates of the start and end                 
points of the traversable rows from the RTK GPS. These points are then rotated and translated to                 
the map frame, using the UTM→ MAP transform from the robot_localization TF tree. Next, the               
order of traversing rows is identified. The planner is subject to the following constraints while               
planning the global path: 

1. Cover Entire Area: The robot should cover the entire field of interest. 

Wholesome Robotics 14 



 

2. Traverse Each Row in Both Directions: Since the stereo camera is mounted on only one               
side of the platform, the robot needs to traverse each row in both directions so that the                 
plants on each side of the row are captured. 

3. Account for Turning Radius: The robot utilizes a skid-steer mechanism and has a large              
wheelbase. Hence it has a large turning radius. The planner should account for this while               
making the plan. 

The robot should be able to switch from the first to the second traversable row. In case                 
the distance between the traversable rows is less than the allowable turning limit of the robot, the                 
robot skips the row and switches to the next one. Also, the robot does not repeat going through a                   
row in the same direction twice. Finally, we get a list specifying the order in which the robot                  
should traverse the various rows. 

This order is converted into a path by generating a rectangular path while switching rows               
and a straight path for motion along a row. This path is then discretized in small steps of approx.                   
0.1m and is passed to the controller as a .npy file. 
 
Controls Sub-system 

The control sub-system takes the global path from the planner and current location from              
the localizer as input and utilizes a control algorithm to track the specified path. Since the robot                 
is a skid steering robot, at any instant the robot can have a velocity along the angular and forward                   
direction only. The sub-system utilizes a proportional controller to calculate the desired linear             
velocity and utilizes a pure pursuit algorithm to calculate the desired angular velocity of the               
robot. 

Given its current position and orientation in the field frame from the localizer, the              
controller uses the pre-generated map file and finds the farthest point within a lookahead distance               
which is in a similar direction as that of the robot. This desired location is transformed into the                  
robot frame. This goal position in robot frame is used to get the forward velocity using a                 
proportional control using Eq. 1 and angular velocity using a Pure Pursuit controller using Eq. 2                
with a lookahead distance of ~1m. 

 

These velocities are then transmitted to the drive-based controller. 
 
8.1.2 Plant Health Monitoring 

Updates of the Pipeline 

The monitoring model and the inference pipeline have been updated significantly in this             
semester. Specifically (1) Mask-RCNN is removed from the pipeline and Unet is used instead (2)               
a simple threshold function is introduced to replace logistic function (3) the 3 level severity               

Wholesome Robotics 15 



 

system is replaced by the binary classification (4) foliage area estimation is removed from the               
pipeline.  

Unet is a simple encoder-decoder architecture which was first proposed to do binary             
semantic segmentation of cell boundaries for medical image analysis. Since it has relatively             
fewer parameters, it is suitable for this project in which the amount of data is limited (roughly a                  
hundred images for each plant). Network architecture aside, with the output of detected hole and               
fungus areas, a threshold function is used to replace logistic functions. One reason for this               
change is that there is a more established analysis methodology for threshold functions such as               
receiver operating curve. To further simplify this problem, the original three levels severity             
system has been reduced to binary classification: essentially a presence detection system. This is              
because when the severity has gone to severe it is probably too late for the farmers, so any                  
presence is useful information. As for the leaf foliage estimation, it was originally proposed so               
that we could divide affected area by total areas, arriving at a dimensionless metric to gauge the                 
severity of pest holes and fungus. This was needed since the previous field setup required us to                 
change the height of the camera during a monitoring run. However, the stereo algorithm used for                
foliage estimation fails to generalize across plants of different shapes. Thus, the foliage             
estimation actually hurts the overall accuracy. Additionally, the new field setup does not require              
us to change the height of the camera, and so the camera height can be set to a fixed value for                     
each plant with a prior known height to get a consistent metric. As it hurts accuracy and is no                   
longer needed for consistent crop monitoring, leaf foliage estimation has been abandoned. 

In the updated pipeline, given an RGB input image, the image is fed into the Unet model                 
to detect hole and fungus area, which would be further sent into a threshold function to obtain a                  
binary label (e.g. this plant has signs of pest). 

Challenge of the system 

TThere are two major challenges for the system, the lack of ground truth and training               
model with a small dataset. Initially, farmers asked evaluation based on the percentage of the leaf                
area e.g. 10% of the leave foliage is fungus. However, pixel-wise ground truth is very hard to                 
obtain as many symptoms are ambiguous, lacking clear boundaries, etc. Initially, intersection            
over union was used i.e. if predicted fungus area intersects with human annotation, then it’s               
considered valid. But again, this metric suffers from the ambiguity of symptoms and the              
fragmented distribution of annotations. This issue is finally resolved by simplifying the problem             
to a binary classification problem where humans can confidently tell whether or not a plant has                
fungus or pest issues. 

Training of the actual model was not a trivial task. Initially, Mask-RCNN was used for               
this project because of its allegedly strong semantic segmentation power, and of its versatile              
capabilities e.g. showing bounding boxes at the same time which can be used for counting.               
However, Mask-RCNN is indeed a complex network that has to be pre-trained first, which was               
usually done on common daily objects such as cars, people, tables, etc. The Mask-RCNN model               
failed to yield performance that meets the target of this project. To resolve the issue, a much                 
simpler UNet model was proposed. Originally used to biology cell boundary detection, UNet             
was designed to work on an extremely small dataset of 30 images. Thus, this model with fewer                 

Wholesome Robotics 16 



 

parameters is possible to train from scratch with our small dataset of 100 images per plant. The                 
actual training process still encountered some issues of imbalanced training data: in any given              
image, there are far more pixels representing background that those representing fungus and pest              
holes, in fact, the ratio of background to fungus to holes is roughly 100:10:1. As a result, the                  
model learned to predict every pixel as a background. To resolve this, a weighting function was                
introduced during the training process to account for this imbalance which indeed generates good              
semantic results. 

 
Figure 16 Inference Pipeline 

 
Figure 17 Fungus and pest hole areas are detected 

8.1.3 Visualization 

Overview 

The purpose of the entire project is to give the farmers a tool for understanding what is                 
happening on their farm. With this in mind, it is critical that the farmers be able to see and even                    

Wholesome Robotics 17 



 

interact with the reports generated by the robot. For this reason, we developed an interactive               
graphical user interface (GUI), incorporating feedback from the farmers, that captures the key             
functionalities they required to get the most out of our system. At a very high level, the visualizer                  
needs to portray the results of the plant health in a way that corresponds spatially to the locations                  
of the images in the field. 

Pipeline 

The main goal of the visualization pipeline is to provide geo-tagged, meaningful data to              
the farmers which allows them to gauge the pest and disease pressure in the field. Figure 18                 
shows a block diagram that summarizes the flow of information in the visualizer pipeline. The               
first step in the pipeline to provide ROS Bag data as input. The ROS Bag Parser module extracts                  
the left and right images from the stereo camera and associates each image with its               
corresponding nearest GPS location. The ROS Bag parser has been designed to handle multiple              
ROS Bags as input which would represent multiple individual rows of data collected by the               
robot. There is an optional exposure checking module in the ROS Bag parser which checks if the                 
majority of images are not either over-exposed or under-exposed. The second step in the pipeline               
involves adding pest and disease classification labels for each image. In order to achieve this, the                
images are passed through the UNet classification pipeline which has been described in detail in               
Section 8.1.2. The labeled and geo-tagged image data is passed into the visualizer GUI for               
visualization. The details of the GUI features have been explained in the next section.  

 
Figure 18 Visualizer pipeline at a glance 

Field Visualization 

The first screen the farmers need to see is one that considers the entire field. The farmers                 
are most interested in a zoomed-out view of their field, such that they can track the spread of a                   
disease or pest and view its implications in the context of their entire farm. The pipeline returns                 
data associated with its longitudinal and latitudinal coordinates, meaning that a simple plotting of              
each image’s value at its stored location yields a fair representation of the farm. However,               
farmers are not actually interested in individual pictures. There are almost 100 plants per row and                

Wholesome Robotics 18 



 

an average of more than three pictures per plant. Graphing each image as its own datapoint,                
while effective, creates an overload of information, making the visualization far less meaningful.             
The farmers requested, as a way to better contextualize the data, that pictures be clustered into                
sets, and that a single value be reported for each set. To do this, the visualizer uses a simple                   
polynomial fit algorithm to fit all the data from a single row (each data point is labeled as                  
belonging to one specific row) to a line. Cluster points are then generated at even intervals along                 
the line (the number is a hyperparameter that the user can configure) and each datapoint is                
associated with the cluster closest to its location. What we get then is a visualization with less                 
datapoints, each of which corresponding to multiple images and their results. 

To make the visualization easy to read and meaningful to the farmer, each datapoint is               
drawn with an icon corresponding to the types of issues detected in that cluster’s images.               
Specifically, if any one of the image in the cluster has fungus, the fungus icon is drawn. The                  
same is true for the pest icon. If both fungus and pests are detected, each in at least one image,                    
both icons are drawn. The icons are also colored based on the overall health of all the images.                  
That is, if every image in the cluster has both disease and pests, the icon is drawn gray, if all are                     
completely healthy it is drawn green. Any other combination is colored by the total number of                
issues (the number of images with pests + the number of images with disease) divided by two                 
times the number of images (figure 18 displays both the icons and the color spectrum used). 

 
Figure 19 Icons and coloring used for visualization 

The resulting graphic has a scale bar, generated using a known conversion equation             
between longitude and feet, and a compass rose, drawn to aid the farmer in interpreting the plot.                 
An example of the final visualization can be seen in figure 20. 

Wholesome Robotics 19 



 

 
Figure 20 Example of  visualization for two rows 

Cluster Viewing and Editing 

The farmers also need the ability to look at and change the details of a particular cluster                 
of images. Clicking on any icon opens a second window (see Figure 21) where the farmer can                 
inspect the images of that cluster and override the health scores given by the monitoring               
inferences. The window includes navigation buttons that switch images; these buttons deactivate            
when there are no more images in that direction. There are also buttons to change the hole or                  
fungus values of the active image or all the images in the cluster. Beneath these buttons there are                  
2 rows of green/red indicators. The first row indicates whether the corresponding image has              
holes, and the second row does the same for fungus. For example, in Figure 21 the first three                  
images of the cluster have holes, the fourth has fungus, and the fifth has both. Finally, at the                  
bottom of the page is a text field where the farmer can store notes about the cluster. For example,                   
if the farmer is able to identify a specific strain of fungus or species of pest, they may want to                    
take note of that in the given space. These changes are all saved, such that they can be recalled                   
when the cluster’s window is reopened and the visualization of the field is updated to match the                 
saved disease and hole scores.  

Closing the visualization of the field saves all of the data, such that it can be recalled the                  
next time the farmer runs the visualization script. 

Wholesome Robotics 20 



 

 
Figure 21 Example of GUI window for a specific cluster 

8.2 Modeling, Analysis, and Testing 

We first conducted a field test at Rivendale Farms in September to collect training data               
for our plant health perception algorithms and collect requirements from our sponsor, Rivendale             
Farms. One concern we had was the length of the sensor boom required to hang the camera over                  
the plants. We, therefore used a spreadsheet to determine the desired center of mass, payload               
capacity and footprint of the robot in order to meet our requirements without tipping. We               
converged on using the same mobile base design as an existing robot in the FRC, the Robotanist.                 
This vehicle has a narrow track and a long wheelbase which enables it to fit in between rows of                   
the field. 

 
Figure 22 Top-down point cloud view of a row of crops at Rivendale, used for the analysis of possible row 

perception strategies. 

Using the RTK GPS data from the field test, we constructed top-down 3D point cloud               
views, shown in Figure 22, of the farm which we used to analyze the width of the robot which                   
was permissible as well as the variation in height of plants, both with would constrain our design.                 
We also visualized the LIDAR scans of the crops in order to analyze what solution would best                 
work for localization. We found that a Gaussian Mixture Model could convincingly generate a              

Wholesome Robotics 21 



 

down-row view, as shown in Figure 23 (e.g. one which collapses the axis facing down the long                 
direction of the row) from centroids and covariances computed from data. This lead to an initial                
row detection approach based on a particle filter with a sensor model derived from this Gaussian                
Mixture Model. 

 
Figure 32 Actual down-row view of point cloud (top) and point cloud generated from Gaussian Mixture 

Model (bottom) 

After the initial field visit and analysis, we converged on a navigation approach and              
tested it in March on the dead brassica crops. While these crops were not necessarily               
representative of the crops when they are fully grown, they enabled us to test in a low-risk                 
environment and also have exposure to the effects of bulldozing while row following and              
turning. We were able to follow a row for several meters with a simplified navigation               
architecture and used ROS bags collected from that test in order to improve our approach.               
Included in our ROS bag was RTK GPS data which we used to validate our location estimate                 
during our SVD. 

We iterated on our navigation approach by testing our row detector on data gathered in               
Fall 2018 as well as testing our planning and controls with an artificial test setup in Spring 2019.                  
This approach enabled us to validate our system even though access to the actual test site was                 
challenging to achieve. 

 
Figure 24 Changes to the Rivendale farm: addition of tarp to prevent weed growth and metal hoops for 

tunnel containment of plants. The metal hoops prevented navigation on all but a few rows of crops. 

Wholesome Robotics 22 



 

During the Fall 2019 semester, we decided to switch to RTK GPS based navigation as we                
we worried about the feasibility of lidar-based navigation due to poor results during our final               
Spring 2019 field test. We thought that RTK itself could be accurate enough to ground-truth and                
improve lidar-based navigation. However, initial field test experiments with RTK GPS showed            
that is was not as accurate as we liked. Even though it was globally accurate, it was often not                   
accurate enough in certain parts of the field to avoid hitting plants. As a result, we decided to                  
parallelly pursue RTK based navigation and lidar-based navigation. Without ground-truth,          
lidar-based navigation relied heavily on field tests, and we ramped up our field testing efforts to                
reflect that. RTK based navigation also consumed a large amount of field testing time, as strong                
results on-campus often did not translate to strong results in row-following on the field. We               
completed six field visits this semester, with the final weeks leading up to Thanksgiving break               
often seeing a field test every week. 

On the farm, several changes to the test environment narrowed the scope of our project,               
shown in Figure 24. Firstly, the total number of rows for brassica was significantly reduced, due                
to issues with the previous year’s crops. Many rows added metal hoops for containment tunnels.               
This limited the rows on which we could reasonably navigate, as it made the rows too narrow for                  
our robot. A weed suppression tarp was added to the brassica crops, which made the ground very                 
dark in lidar-view. We decided to switch our row-detection efforts from detecting and estimating              
the orientation and relative position of plants, to estimating these quantities of the ground              
row-center line. We did this after seeing that the intensity of the plants' points versus ground was                 
very discriminative. However, this later caused a problem when the ground became muddy. 

EKF-fusion-based localization was used in order to mitigate the risks associated with            
row-perception based navigation. Since the robot_localization package assumes the robot to be            
omnidirectional, its process covariance was modified so that its estimated dynamics more closely             
resembled a skid-steering robot. Since testing in field can be done only a limited number of times                 
a semester. We ensured that we collected sensor data during every field visit and saved them as                 
rosbags. This allowed us to test the pipeline on realistic data before taking to the field. Further,                 
the EKF fusion was tested on campus before testing in the field. Despite all these measures we                 
faced various challenges in actual implementation of the localizer in the field. This was              
confusing as our RTK-GPS based localizer worked well in rosbags and during testing on campus               
but not in field. We later identified the issue was that we were not modelling the environment                 
well. We were implementing a 3 DOF fusion and thus were not accounting for variations in the                 
ground. This caused the robot to have a wrong estimate of its position due to its high form factor.                   
This issue was resolved by expanding the fusion to 6 DOF and transforming the location of GPS                 
antenna received to the base of the robot by utilizing the orientation of the robot and the static                  
transform between base and GPS-antenna. The following image explains the challenge and how             
it was resolved. 

Wholesome Robotics 23 



 

 
Figure 25: The image shows how the estimate between the 6 DOF fusion and 3 DOF fusion varied 

because of varying orientation of the robot. 

As for monitoring, data is separated into training, development and testing splits.            
Specifically, training split is mostly used to train the network and the development split is used                
for parameter tuning to find the best threshold value, and the testing split is used to test how well                   
the model can generalize on an unseen dataset. To preserve the best generalization power, the               
threshold valued at equal-error-rate (EER) is chosen. EER is the threshold value where the              
percentage of false acceptance rate equals the false rejection rate. Fundamentally, this assumes             
that it is equally likely for the system to see a positive or negative symbol. 

 
Figure 26 select area threshold with equal-error-rate 

8.3 Performance Evaluation  

The Fall Validation Demonstration tested the integration of the entire system by            
evaluating the process of collecting and analyzing data from the field. That said, the success               
metrics can be broken down into three sets corresponding to the three subsystems. While we               
were unable to show the complete process from beginning to end, due to availability conflicts               
during the last week of the semester we did successfully demonstrate each piece of the pipeline                
working meaningfully and compatible with each other subsystem. 

Wholesome Robotics 24 



 

The first set of metrics evaluated during the FVD were those relating to navigation. At               
the initial demonstration we successfully showed that the robot avoided plants and navigated             
down the row successfully using our detection based approach, but we were unable to show that                
the row switch was at least 80% effective. We confirmed this metric during the encore               
presentation, where we used the updated RTK GPS and 6 DoF IMU Extended Kalman Filter               
approach.  

We also showed that the monitoring pipeline worked according to specifications on the             
data collected. We showed calculations proving the pipeline could be run for the entire field               
within 13 hours (well under the required 24 hours) and we also showed, on new data, that the                  
network exhibited greater than 80% precision and recall for holes and fungus on multiple plants               
(results for fungus detection on curly kale was among the highest performance). 

Finally, we demonstrated the functionality of our visualization tool in realtime. We            
passed our objective metrics for data saving and GUI features. The most important metric is               
unfortunately subjective, namely, whether the farmers find the visualization meaningful and           
helpful. We can only speculate on this metric, based on the feedback we received previously for                
the GUI, which was completely positive. 

We completed our FVD encore with all of our metrics successfully met, meaning that the               
project, at a glance, can be deemed a success. We recognize that we did not show exactly the                  
scenario depicted by the FVD test outline, but by showing the individual parts artificially run as                
a pipeline (i.e. using the data from one part to feed into the next) we very closely simulated what                   
we had initially planned to show. 

Table 8 Performance metrics for Binary Classification of Fungus and Holes 

Binary Classification Performance 

Plant Type Category Precision Recall 

Broccolini 
Pest Hole 79% 100% 

Fungus 95% 95% 

Curly Kale Fungus 91% 83% 

 

8.4 Strengths and Weaknesses 

We were able to deliver a plant health classifier which met our performance requirements              
for precision and recall of hole and fungus presence. We were also able to integrate this into a                  
pipeline which inputted images collected from autonomous navigation, and displayed the data in             
a user-friendly top-down field view with inspection capability. However, our autonomous           
navigation was a weak point. We were able to demonstrate reliable row following on the farm                
with our lidar-based navigation. We were also able to independently demonstrate row following             
and switching on an artificial plant setup on-campus using RTK GPS. However, we were not               

Wholesome Robotics 25 



 

able to demonstrate row-switching on the field. Iteration on in-field row navigation was slow,              
due to the lead time required for field visits, including planning, packing the van, driving to the                 
field, assembling and setting up the RTK base station, and debugging any hardware issues              
caused by disassembling and reassembling the hardware. We also faced increased time pressure             
as the plants slowly died during the semester. Row-switching in particular, depends on regular              
field tests. While in-row lidar perception can benefit from recorded data, the view of the row                
seen for row switching depends on the specific trajectory of the robot, which itself depends on                
the perception output. For this reason, recorded data is less useful for debugging lidar-based row               
switching. More regular field access, particularly during the summer growing season, could have             
improved the results of the navigation pipeline. With the lidar navigation in particular, one              
challenge was that we built an approach assuming that the ground outside the row would have a                 
particular intensity of reflection based on the grass. However, repeated testing turned this area to               
mud, which confused the ground-plant classifier. 

The dataset which we created to train the plant health classifier was also a weakness. We                
collected and labeled data from brassica plants in the field during Fall 2018, and used this dataset                 
for our development during Spring 2019 and for the results shown at SVD. However, Rivendale               
faced extreme difficulty with these crops which lead to major changes at the farm or the 2019                 
growing season. They changed the crops they were growing, which caused us to have to create a                 
new dataset, from scratch, during Fall 2019. Due to the increased time pressure, we decided to                
out-source the data labeling to Scale.AI. However, Scale.AI was not familiar with agricultural             
labeling tasks, being more experienced with autonomous driving applications in particular.           
Frustratingly, all of the labels they generated were erroneous and not suitable for training. About               
half of the labels were usable for training after refinement work. However, this still left about                
half of the data that had collected essentially unlabeled, leaving much to be desired. We also                
encountered weed and other nuisance plant growth during the season that was not present in our                
training dataset, which was therefore mis-classified as fungus by the network, and lead to a drop                
in our metrics. Definitely having a more extensive and robust dataset could have improved the               
metrics on the plant health monitoring side. 

One challenge in general for agricultural computer vision applications is getting suitable            
ground truth labels given the difficulty in finding people with the proper skill set. Susanna, the                
lead grower at Rivendale, left the company while we were still doing our project and was not                 
replaced as of the end of our project. For this reason, we were not able to get final expert                   
judgement on the efficacy of our monitoring system. We were able to get her expert judgement                
for the majority of the time we were working on the system, however, and built our approach                 
around her feedback. 

9 Project Management 
9.1 Schedule 

As compared to the previous semester, we added additional focus to track our set              
milestones and regularly updated the progress in achieving the milestones. The major milestones             
in the start of the semester included an autonomous navigation MVP, an MVP for the data                
parsing and visualization pipeline and updated plant health detection models which can achieve             

Wholesome Robotics 26 



 

the requirements for precision and recall. A minor milestone for the hardware side of the project                
was to create plant guards and test them out in the field.  

For achieving the autonomous navigation MVP, by September mid, we achieved the goal             
of debugging and setting a stable RTK GPS base station, which helped us mitigate one of our                 
major risks coming into this semester. The RTK GPS based navigation node was integrated with               
the planning and controls pipeline by the end of September. However, both RTK GPS based               
navigation and LIDAR based navigation did not work initially in the first week of October.               
Hence, we needed to implement a sensor-fusion based approach for navigation. The time             
required for sensor fusion had not been explicitly planned for and caused us to drift from the                 
expected milestones for the navigation pipeline. For the hardware aspect of the project, the plant               
guards had been modelled, manufactured and tested by the end of October. The work package to                
design new camera mounts was de-scoped and that completed the required hardware            
modifications for the robot. 

For monitoring plant health detection module, we were able to test the binary              
classification modules by the end of September, which put us on schedule. However, in order to                
achieve the required precision and recall for the fungus and hole detection, we could not meet the                 
milestone to achieve that by the start of October. The milestone was achieved in mid October. It                 
required till the mid of November to reiterate and provide final results for the plant health                
detection pipeline. The exposure checking part of the pipeline was de-scoped as we relaxed those               
requirements to adjust with the changes in the field made by the farmers in Fall semester. The                 
ROS Bag Parser and visualizer module was on track until mid October. The integration process               
involved version conflicts and it prevented us from achieving our milestone of a fully integrated               
pipeline until mid November.  

Overall, we were able to hit all our major milestones by the FVD. We had some time to                  
explore some of our stretch goals such as improving LIDAR row detections and trying fusion               
approaches for autonomous navigation. We were also able to add farmer requested features such              
as data points clustering and note-taking for the visualizer. However, allocating extra time for              
integration and testing could have ensured that all the milestones were met on the exact dates we                 
had planned at the beginning of the semester.  

 

Wholesome Robotics 27 



 

 
Figure 27 Gantt chart for the fall semester's work plan 

9.2 Parts List and Budgeting 

We were largely under budget for this project. We have used only 32.5% of our MRSD                
budget and approximately 20% of our sponsorship budget. This is because we were given a               
number of key components from our academic sponsor, and we were able to secure a lidar puck                 
from the MRSD inventory. We also cut down drastically on our expected spending by descoping               
weeding (initially estimated at around $30,000, mostly due the cost of a robot arm). 

Table 9 Budget (actually spent) 
Part Category Cost Budget 

Zotac $1,200 Sponsor 
Computing components $4,00 Sponsor 
Robot Platform Hardware $5,000 Sponsor 
IMU $1,500 Sponsor 

Wholesome Robotics 28 



 

PCB items $30 MRSD 
DIN Rails $60 MRSD 
Fake Plants $250 MRSD 
Robot Replacements and   
Modifications 

$115 MRSD 

Weeding End Effector $440 MRSD 
Field Test tools $435 MRSD 
Plant guards $250 MRSD 

 

9.3 Risk Management 

The process of creating the Work Breakdown Structure and Schedule enabled us to             
identify certain critical risks that could hinder the progress of the report. Each risk has been                
categorized and assigned labels of low, medium, or high for both their likelihood and their               
impact on the project.  

The most important risks in the spring semester were (1) not able to assemble new               
platform in time (2) work scope is too big (including both monitoring and weeding) (3) missing                
out critical subsystem problems due to insufficient communication among team members (4)            
lack of in field training data. All of these risks had been mitigated or resolved in the next                  
semester by descoping weeding and assembling new platform. Furthermore, team members have            
been condensed into navigation and monitoring subgroups where cross communication was           
frequent enough to get rid of ambiguity. Last but not least, enough training data had been                
collected.  

In addition, Trello board was used to keep track of the risks throughout the semester.               
Red, yellow and green are status indicator where red representing high likelihood and medium to               
high severity about the potential impact and green suggesting low likelihood. Each of the risk               
ticket can be assigned a responsible person and due date. Furthermore, each ticket can extend               
into a board for action items and issue logs. 

Wholesome Robotics 29 



 

 
Figure 28 Trello: Risk Management Tool 

The following table list all the major risk during fall semester. All of the risks have been                 
mitigated (reduced likelihood or remove completely) until the end of the semester. 

Table 10 Risk Management 
 Risk Risk 

Category 
Likelihood Impact Solution 

1 Robot can't turn on 
field due to 
blocking weeds 

Logistics/Facilities High High Remove weeds manually 

2 Achieve 80% 
precision & recall 
over plants of 
interest 

Technical High Medium  Use separate model for each type of 
planet 

3 RTK not working Logistics/Facilities Medium High Talked to experienced technician and 
document the exact steps for setup 

4 Localization 
accuracy not 
enough to avoid 
hitting a plant on 
field 

Technical High High Parallely develop both RTK based 
navigation and LIDAR based 
navigation methods 

 

10 Conclusion 
With the end of the Fall semester, we were able to test our completed system in the field.                  

We successfully met our FVD requirements, within the realm of the constraints given by the               

Wholesome Robotics 30 



 

availability of the farm and its plants. We will be sharing our results with our sponsors at                 
Rivendale farms in the near future. 

10.1 Key Lessons 

The key lessons can be summarised as follows: 

1. The importance of risk management and backup plans was observed specifically when            
the project was going off-schedule. Time spent in burning down risk is valuable, as we               
significantly de-risked the RTK system by investing time into debugging and           
understanding the configuration of the system. 

2. It is important to define a manageable scope up-front. Our project initially had many              
components in scope such as weeding which were later de-scoped. 

3. Collecting agricultural datasets is challenging due to the diversity of nuisance plants            
which can present themselves and confuse the classifier. 

4. Labeling agriculturing datasets is challenging due to difficulting in finding people which            
can generate suitable quality labels. 

5. Components dependent on field testing with progress more slowly, and efforts should be             
made to create ground-truth so that these components can be evaluated offline 

6. Agriculture growth cycles are not in sync with the MRSD project timeline. This hindered              
our progress as testing for certain key functionalities was delayed due to a lack of plants                
in the field.  

10.2 Future Work 

The goals for any future work are as follows: 

1. Implementation of the weeding system that we had previously descoped 
2. Improving the robustness of the navigation subsystem 

a. Reducing false-positive and false-negative lidar row detections when navigating         
outside of the row, which should lead to reliable lidar-based row-switching 

b. Fusing row detections with VO in an Kalman filter, rather than a simple fusion              
solution as we have currently, which would reduce the impact of false-positive            
row detections 

c. Evaluating the effectiveness of fusing row detections, VO, IMU, and the 6DOF            
RTK estimate in one filter 

3. Improving the robustness of the plant health monitoring classification system 
a. Improving the quality of the plant health monitoring dataset by collecting more            

images with the presence of additional weeds and other nuisance plants with            
currently cause false positives 

b. Experimenting with more complex models for the semantic segmentation of the           
plant images, closer to state-of-the-art, such as Dilated ResNets or the fully            
convolutional DeepLabv3 

Of particular note, two team members, John and Dung-Han, plan on pursuing the goals              
associated with lidar navigation next semester as part as an independent study. They are focused               
in particular on applying deep-learning based semantic segmentation techniques to the lidar row             

Wholesome Robotics 31 



 

segmentation problem. By converting the lidar point cloud into an image-like spherical            
projection view, models such as the U-Net model used for plant health monitoring currently can               
be used for lidar segmentation and ultimately row detection and classification.  

 

  

Wholesome Robotics 32 



 

10 References 
 

[1] T. Mueller-Sim, M. Jenkins, J. Abel and G. Kantor, "The Robotanist: A ground-based             
agricultural robot for high-throughput crop phenotyping," 2017 IEEE International         
Conference on Robotics and Automation (ICRA), Singapore, 2017, pp. 3634-3639. 

   doi: 10.1109/ICRA.2017.7989418 
[2] O. Ronneberger P. Fischer T. Brox "U-net: Convolutional networks for biomedical image            

segmentation" Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. (MICCAI)          
pp. 234-241 Nov. 2015.  

[3] K. He, G. Gkioxari, P. Dollár and R. Girshick, "Mask R-CNN," 2017 IEEE International              
Conference on Computer Vision (ICCV), Venice, 2017, pp. 2980-2988. 

                doi: 10.1109/ICCV.2017.322 
[4] D.Caruso, J. Engel and D. Cremers, "Large-scale direct SLAM for omnidirectional           

cameras," 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems         
(IROS), Hamburg, 2015, pp. 141-148 

[5] R. Mur-Artal, J. M. M. Montiel and J. D. Tardós, "ORB-SLAM: A Versatile and Accurate               
Monocular SLAM System," in IEEE Transactions on Robotics, vol. 31, no. 5, pp.             
1147-1163, Oct. 2015. doi: 10.1109/TRO.2015.2463671 

[6] J. Zhang S. Singh "LOAM: Lidar odometry and mapping in real-time" Robotics: Science             
and Systems Conference (RSS) July 2014. 

[7] M. Labbé and F. Michaud, "Online global loop closure detection for large-scale            
multi-session graph-based SLAM," 2014 IEEE/RSJ International Conference on       
Intelligent Robots and Systems, Chicago, IL, 2014, pp. 2661-2666. 

[8] S. Thrun, W. Burgard and D. Fox, Probabilistic robotics. Cambridge, Mass.: MIT Press,             
2004, pp. 109- 111. 

Wholesome Robotics 33 


