
Sensors and Motor Control Lab
Individual Lab Report #01

Parv Parkhiya

February 14th, 2019

Team H:

PhoeniX

Teammates:

Shubham Garg

Akshit Gandhi

Zhihao (Steve) Zhu

Individual Progress

Sensors and Motor Control:

For the sensors and motor control lab, I was assigned the job of creating the GUI (Graphical

User Interface) for the system and integrating every team member’s code into a common

framework. I had to start working at the same time when other teammates are working on

electronics or have just started writing the code. A streamlined way would have been one of the

following. Either I create a framework beforehand and ask other teammates to write their

individual functions based on the template or they give me their written functions and I figure out

the integration part. My first target was to figure out the GUI library that I would use. One

interesting solution I found was that Device Droid plugin along with SerialUI library that allows

for integrating GUI specific code inside the Arduino itself. It also had data plotting API available.

While most traditional GUI requires a GUI specific executable installed on the computer, Device

Droid requires a common plugin and GUI specific information would be written inside the

Arduino. This allows us to just connect the Arduino with our GUI code to any computer and

directly use our GUI.

Arduino having the limited computing power and memory constraints, there was a certain

limitation on the GUI. As a proof of concept that everything works, I started writing a dummy

code with basic GUI functionality such as state button, value slider and plotting graph without

any motor or sensor specific code. Getting around with the library and how various API are used

inside took some time figuring out. Once I was able to pass value from GUI to Arduino and plot

the value from Arduino to GUI, I started working on the actual UI for the sensors and motor

control lab. This went really smooth and I was quickly able to populate to GUI frontend and

backend functions template for different motors and sensors. I quickly tested the firmware

without connecting any sensors and everything was working as expected. GUI can be seen in

figure 1.

I provided the necessary template information to all the teammates and provided them for

guidelines that would make the integration part easy. But by the time I gave them the template,

some of them had already written portion of their code. After a couple of days, every teammate

shared the code and all of them were quite different. I had to manually add various declaration,

setup functions and main loop at appropriate places in the GUI framework. Integration was a

real challenge and took a while to fix everything. I will talk more about that in the challenge

section. One GUI part was properly integrated with all motor and sensors, I helped other

teammates in attaching motor and sensors on the wooden plates, making holes etc. for the final

presentation. For team H, I was also the presenter for the sensors and motor control lab.

Note: GUI code is attached as ZIP with submission

Figure 1 Main GUI Screen (Annotated)

Figure 2 Various Motor Manual Setting

Figure 3 Final Sensors and Motor lab rig

Progress on Project:

I along with Akshit and Shubham were on campus for the most part of winter break and started

working on the project very early on. There has been significant progress made since we start

working on the project and giving full description is out of the scope of the ILR. A brief list of

various tasks achieved is as follow. All of us together with the guidance of AirLab, made the

hexacopter from scratch using various parts. We assembled the frame, added 6 motors,

connected motor driver ICs, mounted pixhawk controller, added GPS module, added a battery

and made necessary connections between them. We flashed the pixhawk, calibrated the drone

and done multiple flight tests and made improvements to get a stable flight. After getting a

stable flight, we mounted the Jetson on the drone, established the pixhawk and Jetson

communication. Ubuntu, CUDA, Zed Sensors drivers, ROS were installed on the Jetson. We

have also made ubuntu, Zed sensor, ROS integration on the Husky (UGV) and have been able

to manually control the Husky (UGV). We also made modification on the water deploying

mechanism to achieve a long range. It’s important to note that all these tasks are achieved

collaboratively since everyone was able to work at the same time in the lab. After the start of the

semester, work has been divided so that people can work at their convenience.

Challenges

Sensors and Motor Control:

The major challenge in the sensors and motor control was regarding integration. Teammates

had used overlapping pins. Pins had to be redistributed to connect all the sensors and motor to

one Arduino while considering that only specific pins have an interrupt and PWM capabilities.

Teammates code had a couple of same-named global variables.

Once all of that was fixed, UI was not getting sensor data reliably for some reason. After a long

debugging, I figure out that issue was with returning global variable directly to SerialUI handle.

Why would that create an issue is not entirely clear but probably due to the way SerialUI library

works under the hood. Once that was fixed, we had a whole system working although not very

impressively. Sensors and motor were connected with loose wires and connections were easily

coming out. We had to reconnect wires with a more stable version and place everything on a

wooden board.

Debugging the entire system was also a major challenge that required inputs from all the team

members to get it resolved. That part is discussed further in the Teamwork section.

Progress on Project:
While working during the winter break, every day there was a new challenge. From installing

drivers for a particular sensor or board to creating a physical mount to attach it to the

hexacopter. We collectively confronted all the challenges head-on. Some took a couple of hours

and some took a couple of days to figure out. Of course, the biggest challenge was getting a

manual stable hexacopter flight. We crashed multiple times and even broke landing gear, GPS

mount, a couple of propellers. We had to go out countless times in cold to calibrate IMU to avoid

interference present in an indoor setting. Again, detailing each challenge is out of scope for this

ILR.

Teamwork

Sensors and Motor Control:

My assigned task being GUI, teamwork was essential in integrating every teammates’ code and

even helping them debug their part when everything was integrated. I have already touched

teamwork aspects while talking about challenges in this ILR.

Every sensor and motor also made minor issues such as ultrasonic sensor data were very noisy

and DC encoder motor had large overshoot to name a few. While individual member had to fix

just their motor and code, I had to be with all of them while they debug their part because they

weren’t familiar with SerialUI code and for most bugs, we didn’t know whether the issue was

with UI part or with their function. DC encoder motor performance was finally resolved after

tuning gain values with Akshit and ultrasonic sensor result was improved using a filter

implemented by Shubham.

Integration part would have been much easier if all the members had followed a specific

template from the start. Nonetheless,

Project:

Because of the unique situation of winter break, everyone was usually present in the lab and we

tackled the challenge together for the most part. Calibrating drone, setting up the cage for the

drone testing, building drone required help from all members of the team. When some code

failed to compile, everyone would start searching for the issue. While it may seem inefficient, it

helped us solve any problems in a very short duration and make significant progress. Of course,

such tight collaboration is not possible after the break since everyone has other assignments

and deadlines. Our future plan involves the division of tasks and is included in the upcoming

section.

Plan

Akshit and Shubham have taken priority in working with UAV (Hexacopter) based on their

previous experience working on drones. Steve and I have taken the task of working with the

UGV (Husky) ground vehicle. Our next target is to move both the vehicle autonomously in a

very simple predefined way. UAV should take off, hold and land without any manual inputs and

UGV should drive forward, turn by some angle and drive backward. While most of our work till

now was focused on getting UAV to fly and we have just started working with UGV, we believe

working with UGV should be easier compare to UAV. We are prepared to allocate more

resources (work time) towards UAV if required.

For UGV (Husky), we need to mount a stereo camera and LiDAR sensor. Also, currently single

board computer for UGV is Zotac PC and power distribution system that would power Zotac and

LiDAR needs to figure out. We are planning to do this as part of the PCB Assignment. After that

my long-term goal is to get ORB SLAM up and running first on UGV and then on UAV as well

and integrate it with ROS action server framework which we have decided to use.

Quiz

Q 1: Datasheet Reading
g corresponds to gravitational acceleration on earth’s surface

• Typical Sensor Range is from -3.6 g to +3.6 g (minimum range is -3 g to +3 g)

• Typical Dynamic Sensor Range is 7.2 g (minimum 6 g)

• Cdc acts as a low pass filter to counter the voltage fluctuation present in the power supply.

Capacitor achieves this by resisting the rapid change in voltage (𝑖 = 𝐶
𝑑𝑉

𝑑𝑡
) by providing or

absorbing additional charge.

• Transfer Function 𝑉𝑜𝑢𝑡 = 1.5𝑉 +
300𝑚𝑉

𝑔
𝑎 (where a is acceleration input)

• Largest nonlinearity error: ±0.3% 𝑜𝑓 𝐹𝑢𝑙𝑙 𝑆𝑐𝑎𝑙𝑒 i.e. ±3.6𝑔 ∗
0.3

100
= ±0.0108𝑔

• For both X and Y axis, noise density is 150𝜇𝑔/√𝐻𝑧

∴ 𝑅𝑀𝑆 𝑁𝑜𝑖𝑠𝑒 𝑎𝑡 25 𝐻𝑧 = 150 ∗ √25 ∗ 1.6 ∗ 10−6𝑔 = 0.000948𝑔

• To experimentally determine the Noise at 0 Hz, we would need to measure the reading at

constant acceleration. The simplest way to get a constant acceleration is free fall. Sensor along

with a microcontroller that can read the analog value and store the value can be dropped to free

fall in Vacuum tube. Now the measured a and actual g can be compared to get the noise

information at 0 Hz.

Q 2: Signal Conditioning
Filtering

• Moving Average Filter:

o While moving average filter does remove high-frequency noise to some extent but it

also causes loss of information especially by blurring the strong edges present in the

image.

o Deciding the size of the window is challenging and can lead to a better or worse result.

• Median Filter:

o Unlike moving average filter, Median filter assigns pixel value from the surrounding

neighbor pixel values which lead to strong edges being preserved. But the smoothing

and noise removal is not as good as moving average filter.

o Deciding the size of the window is also challenging here like Moving Average filter.

• OpAmp:

o For the given standard circuit, the equation can be written as

𝑉𝑜𝑢𝑡 = (1 +
𝑅𝑓

𝑅𝑖
) 𝑉2 −

𝑅𝑓

𝑅𝑖
𝑉1

Sensor 1: Uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a 0V output and

1.0V should give a 5V output)

Let 𝑉1 = 𝑉𝑟𝑒𝑓 then OpAmp equation can be written as follow,

0 = (1 +
𝑅𝑓

𝑅𝑖
) (−1.5) −

𝑅𝑓

𝑅𝑖
𝑉𝑟𝑒𝑓

5 = (1 +
𝑅𝑓

𝑅𝑖
) (1) −

𝑅𝑓

𝑅𝑖
𝑉𝑟𝑒𝑓

Subtracting above equation,

5 = 2.5(1 +
𝑅𝑓

𝑅𝑖
)

∴
𝑅𝑓

𝑅𝑖
= 1

Putting it back in equation yields,

5 = (1 + 1)(1) − (1)𝑉𝑟𝑒𝑓

∴ 𝑉𝑟𝑒𝑓 = −3

Transfer function can be given by,

𝑉𝑜𝑢𝑡 = 2 ∗ 𝑉2 + 3

Thus, our assumption is correct. 𝑉1 is the reference voltage and its value is −3. 𝑉2 is the input

voltage. Also,
𝑅𝑓

𝑅𝑖
= 1

Sensor 2: Uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V output and

2.5V should give a 5V output)

Let 𝑉1 = 𝑉𝑟𝑒𝑓 then OpAmp equation can be written as follow,

0 = (1 +
𝑅𝑓

𝑅𝑖
) (−2.5) −

𝑅𝑓

𝑅𝑖
𝑉𝑟𝑒𝑓

5 = (1 +
𝑅𝑓

𝑅𝑖
) (2.5) −

𝑅𝑓

𝑅𝑖
𝑉𝑟𝑒𝑓

Subtracting above equation,

5 = 5(1 +
𝑅𝑓

𝑅𝑖
)

∴
𝑅𝑓

𝑅𝑖
= 0

Putting it back in the equation,

5 = (1 + 0) ∗ 2.5 − 0 ∗ 𝑉𝑟𝑒𝑓

5 = 2.5

Therefore, our assumption is false.

Let 𝑉2 = 𝑉𝑟𝑒𝑓 then OpAmp equation can be written as follow,

0 = (1 +
𝑅𝑓

𝑅𝑖
) 𝑉𝑟𝑒𝑓 +

𝑅𝑓

𝑅𝑖
2.5

5 = (1 +
𝑅𝑓

𝑅𝑖
) 𝑉𝑟𝑒𝑓 −

𝑅𝑓

𝑅𝑖
2.5

Subtracting above equation,

5 = −5(
𝑅𝑓

𝑅𝑖
)

∴
𝑅𝑓

𝑅𝑖
= −1

But 𝑅𝑓 𝑎𝑛𝑑 𝑅𝑖 are resistors and can not have negative resistance value.

Therefore, this assumption is false as well.

Thus, no value of 𝑅𝑓 , 𝑅𝑖 or Selection of 𝑉1, 𝑉2 as reference voltage can lead to desired output

mapping.

Q 3: Control

• PID Control: Simplest way would be to construct an error term as follow:

𝑒𝑡 = 𝜃𝑡
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃𝑡

𝑎𝑐𝑡𝑢𝑎𝑙

Where 𝜃𝑡
𝑎𝑐𝑡𝑢𝑎𝑙 will be 𝜃𝑡

𝑠𝑒𝑛𝑠𝑒𝑑 using some encoder or other sensor.

Derivative Term:

𝑒�̇� = �̇�𝑡
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − �̇�𝑡

𝑎𝑐𝑡𝑢𝑎𝑙

Now, if just want to reach a position (𝑛𝑜 �̇�𝑡
𝑑𝑒𝑠𝑖𝑟𝑒𝑑) in which case �̇� can be approximated as follow

𝑒�̇� =
𝑒𝑡 − 𝑒𝑡−Δ𝑡

Δ𝑡

Integral Term:

Similarly, the integral term can be approximated as follow,

∫ 𝑒 𝑑𝑡 ≈ 𝑒𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑡) ≈ 𝑒𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑(𝑡−Δ𝑡) + 𝑒𝑡

𝑡

0

∗ Δ𝑡

Finally, the control input acceleration or the PWM can be given by,

𝑖𝑛𝑝𝑢𝑡 𝑢𝑡 = 𝐾𝑝 ∗ 𝑒𝑡 + 𝐾𝑑 ∗ 𝑒�̇� + 𝐾𝑖 ∗ ∫ 𝑒 𝑑𝑡
𝑡

0

• To remove, sluggish behavior, I would increase proportional gain 𝐾𝑝 which will increase the net

input to the system for quicker convergence. Since 𝐾𝑝 directly corresponds to the error present

in the system.

• To remove the steady-state error, I would increase the integral gain 𝐾𝑖 since, in case of a steady

error that integral term would keep adding the steady state error in input and would over time

counter the error when this integral term becomes a sufficiently large value.

To reduce the overshoot, I would increase the derivative gain 𝐾𝑑 since it would keep a check on

the rate of change so that in an attempt to reach the goal location, we don’t end up with a high

velocity which causes the overshoot when we reach goal location.

