
INDIVIDUAL LAB REPORT 1

Sensor and Motor Lab

Shubham Garg

TEAM H (PHOENIX)

Teammates:

Akshit, Parv, Steve

February 21, 2019

Individual Contribution:

1. Ultrasonic sensor interfacing + Servo motor control
2. Code for push button with software debouncing to change motor state.
3. Helping teammate in writing PID code and gain tuning

Ultrasonic sensor:

Sensor Interface:

My task is to interface an LV-Maxsonar EZ series sensor with Arduino. There are three
different types of interfaces possible to interface the sensor. First is by measuring the
pulse width of the sensor, second by reading the analog values from the sensor and third
is the serial communication-based interface. Initially, I tried using analog interface but
it was prone to noise and distance measurement was very inaccurate. I couldn’t use the
serial interface as the baud rate is low, 9600. Also, our GUI has some internal latency
which will further delay the sensor response. Pulse width based sensor data has much
larger DC noise rejection. So, I decided to use PW (pulse width) based interface.

Filtering:

I measured the pulse-width using Arduino inbuilt function. For filtering, I decided to
use the software filter as it is easy to implement and configurable as per the requirement.
Initially, I tried averaging filter but it didn’t perform well in removing outliers. Also, a
large window size in the moving average filter added latency in the system. So, finally, I
used a combination of Mode & median filter with the window size of 7. If the dataset has
a single mode, then the filtered value is same as the mode of the dataset but if there are
the multiple modes in the dataset, the median of the dataset is considered as the filtered
output.

Power:

This sensor requires a voltage between 2.5 and 5.5 V and it draws around 3 mA of current.
This power rating can be easily handled by the Arduino. So, I decided to power it straight
from the Arduino.

Range and Transfer function:

According to the datasheet, the range of the sensor is from 6 inches to 254 inches. Our
result also lies in a similar range (7 inches to 245 inches). The sensor doesn’t work well
below 15-18 cms.

1

I took multiple reading of sensor pulse width and actual distance. Below is the transfer
function between the sensor pulse width in (us) v/s actual distance in meters. I used a
simple least square based optimization technique to find the best fit line for the transfer
function. Desired equation of the transfer function is: y = 0.0172x + 4.12114

Servo motor:

We used the HS-311 servo motor used for this assignment. Our servo motor range lies
from 0-180. As this motor has an internal feedback control mechanism inbuilt in the
motor, we didn’t need to implement any control algorithm for position control.
The angular position of the servo motors is controlled using pulse width modulation
and servo expect a pulse every 20ms. The angular position of the motor depends on the
length of the pulse width. A pulse width of 1ms keeps it at 0deg and 2ms keeps it at
180deg. Varying the pulse width between 1ms and 2ms drives the servo to that particular
angle. I used existing Arduino library to control the motor where the input function just
needs the desired target angle and Arduino generates the required pulse width.
Further, I used the Arduino map function to map the sensor value range of 20-80cm to
0-180 servo angle.

2

Push button interface to change the motor state:

Internally we maintained a state machine to run different motors and sensors. There are
two options available to select the motor. One is the GUI based interface and the other
one is a push button.
I used software debouncing mechanism to interface it with the Arduino. Arduino just has
two interrupt pins which were utilized by the DC motor encoder. So, I used a pooling-
based mechanism to interface the button. Debouncing delay of around 100ms worked for
us but we had to press the switch a bit longer to ensure the state is changed.

Other contributions:

We decided not to use the Arduino’s PID library for controlling the DC motor. So, we
wrote the PID control algorithm from the beginning. I helped him in formulating the PID
feedback loop, PID input, and output parameters. Initially, the gains were pretty low and
it was taking some time to reach the desired set point. I helped him in tuning the gains
for the DC motor.
Like ultrasonic sensor, Force sensor also required filtering to smooth the sensor data. So,
I helped Steve in developing filter algorithm for the force sensor.
I was also responsible for hardware integration especially ensuring common grounds for
all the sensors and motors, keeping wire short for all the sensors to avoid any unwanted
noise in the sensor data etc.

Challenges:

I faced a few difficulties in interfacing ultrasonic sensor as there were frequent spikes in
the sensor values every 1 or 2 seconds. Then I tried a few filtering techniques taught in
the class. I started with an averaging filter but it further increased the latency between
hardware and the GUI. So, this issue was resolved by using a combination of mode & me-
dian filter. Also, initially we mounted the sensor on the slider for demonstration but we
had to use long wire cables for connecting it to the Arduino. This long cable significantly
introduced the noise in the sensor output. Since the ultrasonic sensor has a large beam
width, it’s difficult to calibrate or create a transfer function as it gets easily disturbed by
the surrounding noise. So, we created a mount and slider mechanism to calibrate and
develop the transfer function for the sensor.
We individually tested out sensor and motors but when it came to integration, we started
facing a lot of difficulties. As everybody used their own style of programming, it was
challenging to integrate all the code in a single file. We should have created the library

3

for individual sensor and motor which could have facilitated the sensor and motor inte-
gration.

Teamwork

Below is the complete figure of the our system. We used Ultrasonic sensor, LM35 temper-
ature sensor and Force sensor.

Akshit: DC motor control, encoder interface, PID design and LM35 temperature sensor.
Parv: Graphical user interface and software code integration.
Steve: Flex sensor and Stepper motor.

Project progress and future plans

We have flashed the Nvidia Jetson, installed Ubuntu and other basic CUDA dependen-
cies on it. We had to go through few iterations as display driver stopped working after
installing CUDA driver. We are able to connect Zed Sensor with Jetson and get RGB im-
ages and point cloud data.
We tested the water tank with a pump but in its default state, the water pressure was not
enough. In addition to that, the pump was designed to be used by keeping it in vertical,
where we would need to place a tank in the horizontal position on the drone. So, with-
out modifications, only 50-60% of the water can be pumped out. We made modification
on water tank by removing the pump, sealing the hole, creating a new hole and placing
the pump at that location so that it can work when placed horizontally till 100% water is
deployed. We also made the nozzle small to increase the pressure so that we can shoot

4

water at a long distance.
We assembled the Tarot frame and were successful in doing a stable flight. We tried PX4
Alt hold mode using onboard IMU and hexacopter was going up and down by few cms.
This is because barometer doesn’t work well in an indoor environment, so to measure
accurate distance in the z-direction, we are using Lidarlite sensor. We initially tried PWM
interface but it didn’t work as the latest PX4 firmware doesn’t support PWM input cap-
ture. So, we used the I2C protocol for the interfacing.
We were able to setup Husky and able to drive it with manual control using rViz.
To improve the reliability of the system we are using ROS action server action which en-
sures that if any ROS node crashes there is a mechanism to recover from that state. Also,
the user might want the ability to cancel the request during execution or get periodic feed-
back about how the request is progressing. We are currently integrating our few tasks like
for UAVs: Land, Takeoff, for Husky: Move forward/backward, etc.
Our current plan is to use the ZED sensor for visual odometry to test the position hold.
Further, the idea is to create a high-level task like such as Land, Takeoff, Localize fire &
Extinguish fire.

5

QUIZ

Solution 1.
1. What is the sensor’s range?
Ans: Minimum sensor range ±3g and typical value is ±3.6g
2. What is the sensor’s dynamic range?
Ans: Sensor’s minimum dynamic range is 6g & Sensor’s typical dynamic range is 7.2g.
3. What is the purpose of the capacitor CDC on the LHS of the functional block diagram
on p. 1? How does it achieve this?
Ans: Here the role of the capacitor is to remove the incoming ripple noise from the power
supply. Capacitor doesn’t allow the sudden change in the voltage across it. So, initially
when the capacitor will be fully charged, it will constantly try to provide that voltage to
the circuit and will resist the ripples from the power supply.
4. Write an equation for the sensor’s transfer function.
Ans: Transfer function for this sensor is: Vout = 1.5 + 0.3 ∗ a
where Vout is the electrical output from the sensor and a is the physical quantity measured
which is acceleration here.
5. What is the largest expected nonlinearity error in g?
Ans: Largest expected non linearity: ±0.3 % of the full scale. Considering the typical full
scale of ± 3.6g, largest expected nonlinearity is ± 0.0108g.
6. How much noise do you expect in the X- and Y-axis sensor signals when the sensor is
excited at 25 Hz?
Ans: Noise density in X & Y direction is 150 µg/

√
Hz. So, for 25 Hz, the RMS noise is

around 0.000750 g or 750 µg.
7. How about at 0 Hz? If you can’t get this from the datasheet, how would you determine
it experimentally?
Ans: Noise at 0 Hz is not provided in the datasheet. But it can be determined experimen-
tally by keeping sensor at some stationary position and taking the reading on all the three
axes. Root mean square (rms) value of the reading will be the noise at the 0 Hz.

6

Solution 2.
Signal conditioning
1. Filtering
1.1. What problem(s) might you have in applying a moving average?
Ans:

• Moving average filter is a kind of low-pass filter which removes high frequency
noise from the signal. But as the window size increases, this filter introduces latency
in system which makes it unfeasible for real-time applications

• Also, this filter removes the outlier at the cost of certain information loss (because
of smoothing).

1.2. What problem(s) might you have in applying a median filter?
Ans:

• Median filter requires pre-processing (sorting) of the dataset which could be a com-
putationally expensive operation for large window size.

• Median filters can only eliminate rare/random outliers but in case if multiple such
outliers occurs, median filter will fail.

2. Opamps
2.1 In the following questions, you want to calibrate a linear sensor using the circuit in
Fig. 1 so that its output range is 0 to 5V.
Identify:
1) which of V1 and V2 will be the input voltage and which the reference voltage;
Ans: Applying kirchhoff’s law at the inverting input of the op-amp (as Iin = 0)will give
following equation:

(Vout−V2)
R f

= V2−V1
Ri

Vout = V2 +
R f (V2−V1)

Ri

For both the cases Vout has to be always positive, So, only if V1 is negative reference volt-
age and V2 is input voltage, then for both the positive and negative values of V2, Vout will
be positive. In other cases input voltage is either always positive or negative for positive
output voltage.

1. If uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a 0V output and
1.0V should give a 5V output). Input should be V2 and reference voltage should be V1

7

2. If uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V output and
2.5V should give a 5V output) then V1 has to positive but if V1 is positive then the Vout
will not always be positive. So, there is no solution for this calibration.

2) the value of the reference voltage;
Ans: For first case: If uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a
0V output and 1.0V should give a 5V output):

V2(1 +
R f
Ri
) = V1

−1.5(1 +
R f
Ri
) = V1 Also,

5 = 1 +
R f (1−V1)

Ri

Solving above two equation gave V1 = -3V & R f /Ri = 1

For Second case: If uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V
output and 2.5V should give a 5V output):

V2(1 +
R f
Ri
) = V1

−2.5(1 +
R f
Ri
) = V1 Also,

5 = 2.5 +
R f (2.5−V1)

Ri

So, above two equations can’t be solved simultaneously. Hence there is no reference
voltage for this case.

and 3) the value of Rf/Ri in each case. If the calibration can’t be done with this circuit,
explain why.
Ans: For first case: If uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a
0V output and 1.0V should give a 5V output): As solved above, the value of

R f
Ri

= 1 for
this case.

For Second case: If uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V
output and 2.5V should give a 5V output): There exists no solution for this case as the
V1 has to positive and Resistance can’t be negative. So, no solution exists for this case.

8

Solution 3.
3. Control
3.1. If you want to control a DC motor to go to a desired position, describe how to form a
digital input for each of the PID (Proportional, Integral, Derivative) terms.
Ans: Based on the target position, the control cmd is generated every timestep.
Below parameters are computed to fed in the PID controller. Based on the current position
and desired setpoint, error is computed which is multiplied with the Kp gain.
The rate of change of error is computed by keeping track of previous error in t-1 and
current error at t. Current error is substracted from previous error which is divided by
the timestep (δt) and this terms is multiplied with Kd.
Finally, all the error is accumulated and multiplied with δt. This term is multiplied with
the gain Ki.

u = control cmd
δt = Timestep used to control the position of the motor θd = Desired target position
θa = Actual target position/ Set point
θe = Error in position at any time, t
θ̇e = Rate of change of error in joint angle∫

θe = Accumulated error in the joint angle
u = Kp ∗ (θd − θa) + Kd ∗ θ̇e + Ki ∗∑ θe

3.2. If the system you want to control is sluggish, which PID term(s) will you use and
why?
Ans: If the control is sluggish, then the P term i.e. Kp gain needs to be increased. Because
Kp term controls the instantaneous error of the system and controls how quickly the sys-
tem should respond if current state is away from the desired position.
3.3. After applying the control in the previous question, if the system still has significant
steady-state error, which PID term(s) will you use and why?
Ans: If the system has steady state error, I term i.e. Ki gain needs to increased. Because
Ki term accumulates the error and this adds more correction if the error persists for too
long.
3.4. After applying the control in the previous question, if the system still has overshoot,
which PID term(s) will you apply and why?
Ans: If the system has overshoot, then the D term i.e. Kd gain needs to be increased
which introduces damping in the system. Because Kd controls the rate of change of error
and limits the speed of the correction. Also, reducing Kp gain will help in reducing over-
shoot as it will try to make system more sluggish and reduce the overshoot.

9

CODE

include <Servo . h>

Servo myservo ;
const i n t pwPin = 7 ;
// v a r i a b l e s needed to s t o r e values
i n t a r r a y s i z e = 7 ;
i n t rangevalue [] = { 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
long pulse ;
i n t mode ;
i n t a c t u a l _ d i s t ;
i n t pos = 0 ; // v a r i a b l e to s t o r e the servo p o s i t i o n
i n t unca l ib_va l ;

void setup ()
{

//Open up a s e r i a l connect ion
S e r i a l . begin (9 6 0 0) ;
//Wait f o r the s e r i a l connect ion
delay (5 0 0) ;
myservo . a t t a c h (1 4) ;

}

//Main loop where the a c t i o n takes place
void loop ()
{

pinMode (pwPin , INPUT) ;

f o r (i n t i = 0 ; i < a r r a y s i z e ; i ++)
{

pulse = pulseIn (pwPin , HIGH) ;
unca l ib_va l = pulse / 5 8 ;
rangevalue [i] = 0 . 9 9 7 6 * unca l ib_va l + 4 . 1 2 1 ;

10

delay (0 . 1) ;
}
mode = f i l t e r (rangevalue , a r r a y s i z e) ;
r o t a t e _ s e r v o (i n t (mode)) ;

}

//Function to p r i n t the arrays .
void printArray (i n t * a , i n t n)
{

f o r (i n t i = 0 ; i < n ; i ++)
{

S e r i a l . p r i n t (a [i] , DEC) ;
S e r i a l . p r i n t (’ ’) ;

}
S e r i a l . p r i n t l n () ;

}

void r o t a t e _ s e r v o (i n t angle) {
myservo . wri te (angle) ;

}

void i n s e r t i o n _ s o r t (i n t * a , i n t n) {
// * a i s an array pointer funct ion
f o r (i n t i = 1 ; i < n ; ++ i)
{

i n t j = a [i] ;
i n t k ;
f o r (k = i − 1 ; (k >= 0) && (j < a [k]) ; k−−)
{

a [k + 1] = a [k] ;
}
a [k + 1] = j ;

}
}

//Mode funct ion , re turning the mode or median .

11

i n t f i l t e r (i n t * x , i n t n) {
i n t i = 0 ;
i n t count = 0 ;
i n t maxCount = 0 ;
i n t mode = 0 ;
i n t bimodal ;
i n t prevCount = 0 ;

while (i < (n − 1)) {
prevCount = count ;
count = 0 ;

while (x [i] == x [i + 1]) {
count ++;
i ++;

}

i f (count > prevCount & count > maxCount) {
mode = x [i] ;
maxCount = count ;
bimodal = 0 ;

}
i f (count == 0) {

i ++;
}
// I f the d a t a s e t has 2 or more modes .
i f (count == maxCount) {

bimodal = 1 ;
}
//Return the median i f there i s no mode .

i f (mode == 0 || bimodal == 1) {
mode = x [(n / 2)] ;

}
}
re turn mode ;

}

12

