
Sensor	and	Motor	Lab	

Individual	Lab	Report	

Name: Zhihao Zhu


Team: PhoeniX (H) 


Date: 02/14/2019


Team Member:  Akshit Gandhi 


      Shubham Garg 


	 	      Parv Parkhiya 




2.	Sensors	and	Motor	Control	Lab—Individual	Progress	

My role in the “sensor and motor control lab” task is to collect the force applied 
on the Force Sensitive Resistor (FSR), and use that to control how many 
degrees the stepper motor need to rotate. Larger the force applied on the FSR, 
more degrees will the stepper motor rotate. So there are two separate steps to 
establish the system: 1. read the force, 2. control the step motor.


1. Read the force 

First, because the signal input into the Arduino is voltage, not the resistance. So 
we need to first build a circuit to obtain a voltage value which can represent how 
large the resistance is. In our case, the circuit model we build is:








where 5v power supply from Arduino applies on the circuit. To avoid short 
circuit, we add an additional 3.3kΩ resistor R1 in the circuit. Then, we measure 
the voltage over the R1 with respect to the ground, and the measured value is 
used as input into Arduino’s input port A0. To get the relationship between force 
applied on FSR and the input of A0, we need to first study the dynamic behavior 
of the FSR:




The relationship is generally linear from 50g and up, but note what the 
relationship does below 50g, and even more-so below 20g. These sensor’s have 
a turn-on threshold – a force that must be present before the resistance drops to 
a value below 10kΩ, where the relationship becomes more linear. But in our 
experiment, we find simplifying the force-voltage relationship does not harm the 
overall control performance. We directly read the input value from A0 (as it 
ranges from about 0 to 400).


and in the code, I implement as this:




where fsrADC is the input value read from port A0. For us to achieve more stable 
input flow, we update only one tenth the difference between previous input and 
current input. Then, the newly updated value pre_input is fed into the function 
StepForwardDefault( ) to control the stepper motor rotation.


2.  Control the step motor 

After obtaining the input control signal (the voltage input into analog port A0), we 
can use that signal to control how many degrees the stepper motor should 
rotate.


First, the stepper motor should be connected to the red board, which is then 
connected to the Arduino, in order for the Arduino to control the stepper motor. 
The connection is as follows (from documentation):


 


We assign the pin function on Redboard as:




Explanation for the function of each pin: 

	 stp: if set to HIGH, run one step

	 dir: if set to HIGH, run in “reverse” direction

	 En: if set to LOW, allow the control of the motor.

	 MS1 and MS2 are together used to control the degrees each step will go:


For the motor provided, 1.8 deg is the default full step size. which means for 
each full step, the motor will rotate 1.8 deg. 

Finally the motor control function can be written as:


  



First, we set a variable “buffer”, which is used to avoid small input disturbance. 
It means when the difference between new input and previous input is large 
enough, we deem it as a viable input. Otherwise, we reset the stepper motor to 
the default resting state. Then, if the difference between the current position and 
desired position is positive, we will make stepper motor rotate forward one step 
(which is 1.8 deg). Else, we will make the stepper motor rotate backward one 
step. This will repeat until the final difference between the current position and 
desired position is zero.


3.	MRSD	project	progress	

After submitting the CoDR, we worked on building our drone’s hardware/
software system from scratch. We assembled drone’s components, as well as 
the sensors (e.g. infrared camera, stereo camera..). Then, we also configured the 
software system (the installation of Ubuntu on the Nvidia TX2 onboard 
computer, and also the necessary packages including CUDA, OpenCV, etc) We 
have successfully make the drone to fly and hold stable in certain attitude. Our 
next step is to make the drone fly smoothly in the horizontal direction. In 
addition, we will make the drone and Husky operate autonomously (follow 
certain path to reach the target position) without human control.




1. Reading a data sheet. Refer to the ADXL335 accelerometer 
data sheet to answer the below questions. 

1.1 What is the sensor’s range? 

	 The sensor has a minimum full-scale range of ±3 g, and a typical range of 
±3.6 g


1.2 What is the sensor’s dynamic range? 

	 The dynamic range of the sensor is 7.2 g.


1.3 What is the purpose of the capacitor CDC on the LHS of the functional 
block diagram on p. 1? How does it achieve this? 

	 The CDC is used to decouple the accelerometer from noise on the power 
supply. The capacitor acts like a high-frequency-pass filter, and filters the high-
frequency noise. Because when the signal’s frequency is high, the capacitor’s 
resistance becomes small, and alternating current will pass through CDC.


1.4  Write an equation for the sensor’s transfer function. 

�  

1.5  What is the largest expected nonlinearity error in g? 

Error_nl = 6 * 3% = 0.18


1.6 How much noise do you expect in the X- and Y-axis sensor signals 
when the sensor is excited at 25 Hz? 

	 Noise = 150 * 5 ug = 750 ug


1.7 How about at 0 Hz? If you can’t get this from the data sheet, how would 
you determine it experimentally? 

Apply a signal with 0 Hz, then measure on the output to determine the 
noise.


Vout = 1.5V + 0.3V *
acceleration

g



2.  Signal Conditioning 

2.1 Filtering 

2.1.1 What problem(s) might you have in applying a moving average? 

	 It may remove important signals with certain frequency. Also, it has time 
lag.


2.1.2  What problem(s) might you have in applying a median filter? 

	 Applying the median filter has a high computational cost.


2.2  Opamps 

	 According to the circuit, we can write the equation as following:


case 1: Your uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give 
a 0V output and 1.0V should give a 5V output).



we use         as reference voltage, so we have:


By solving the above equations, we have:

	 


(
Rf

Ri
+ 1)V2 −

Rf

Ri
V1 = Vout

Vi

−1.5(
Rf

Ri
+ 1) = 0 +

Rf

Ri
V1

(
Rf

Ri
+ 1) = 5 +

Rf

Ri
V1

V1 = − 3

Rf

Ri
= 1



case 2: Your uncalibrated sensor has a range of -2.5 to 2.5V (-1.5V should give 
a 0V output and 1.0V should give a 5V output).


	 The calibration can’t be done. Because no matter we use �  or �  as 
reference voltage, we can’t solve the above equation with appropriate choice of 

�  (the �  we got is either 0 or negative).


4.  Control 

4.1  If you want to control a DC motor to go to a desired position, describe 
how to form a digital input for each of the PID (Proportional, Integral, 
Derivative) terms. 

(1) Proportional: difference between current position and desired position

	 

	 (2) Integral: Sum of accumulated error from previous steps.


	 (3) Derivative: rate of the error changes.


4.2  If the system you want to control is sluggish, which PID term(s) will you 
use and why? 

I will just proportional term. Because the proportional control regulates 
error more quickly. Using integral term will even prolong the system to converge. 
Derivative has little influence on a sluggish system as the derivative of that 
system is small.


4.3 After applying the control in the previous question, if the system still 
has significant steady-state error, which PID term(s) will you use and why? 

	 I will use the integral term, because just using the proportional term can’t 
eliminate the steady-state error. By applying the integral control, the 
accumulated error can be diminished


V1 V2

Rf

Ri

Rf

Ri



4.4 After applying the control in the previous question, if the system still 
has overshoot, which PID term(s) will you apply and why?  

	 I will apply derivative control. Because by adding derivative control, 
system will decrease the control input when it saw the error rate change is fast.


