
INDIVIDUAL LAB REPORT 5

Progress Review - 4

Shubham Garg

TEAM H (PHOENIX)

Teammates:

Akshit, Parv, Steve

April 11, 2019



Individual Contribution:

1. Fire tracking by visual servoing for husky (on Gazebo)
2. Integrate UAV (Iris) and AGV (Husky) simulation on Gazebo
3. Installing Intel Realsense Tracking Camera T265 SDK/drivers on Nvidia TX2

Fire tracking by visual servoing for Husky (on Gazebo):

Setting up the simulation for Husky on ROS Kinetic requires the installation of multi-
ple other dependencies. So, for simplicity, I built the husky package from the source and
added LMS1xx, husky, interactive_marker_twist_server, robot_localization and twist_mux
ROS packages in the catkin workspace. We had to design a completely new environment
(as per MBZ IRC Challenge 3) for the simulation such that the husky and Iris can enter
the building and demonstrate fire extinguishing task. The final Gazebo environment can
be seen in Figure 1.
I used the move_base ROS package to perform basic autonomous planning and move-
ment on a simulated husky. This ROS package provides an implementation of an action
that, given a goal in the world, will attempt to reach it with a mobile base. The move_base
node links together a global and local planner to accomplish its global navigation task.
Also, it supports any global planner adhering to the BaseGlobalPlanner interface speci-
fied in the nav_core package. The move_base node also maintains two cost maps, one
for the global planner, and one for a local planner that are used to accomplish navigation
tasks.

Figure 1: Gazebo Environment for Husky & Iris simulation

1



Without any absolute localization source on the husky, the position estimate was drift-
ing relative to the world. So, to mitigate this drift, I used the Adaptive Monte Carlo Local-
ization (AMCL) ROS package which fuses on board IMU (odometry estimate) with laser
scanner output. This algorithm provides real-time localization for husky (or any other
robot). It is a particle filter based probabilistic localization algorithm which estimates
the pose of a robot against a known given map. So, the AMCL node uses a generated
map of the environment to compare against the incoming laser scans. The output of the
laser scans can be seen in Figure 2. For generating the map of the environment, I used
gmapping launch file included in the husky_navigation package. Further, I navigated the
husky around the environment until it has a good map of the world. Before killing the
gmapping, I saved the map with map_server which is used by AMCL ROS node. Also,
the Monte Carlo localization algorithm needs an initial pose estimate and without an ini-
tial estimate, this approach will not converge to the correct pose.
For simulating visual servoing in the Gazebo, we need to design a perception abstraction
framework which can publish the fire location (goal location) in real time. Then that lo-
cation can be subscribed to send the husky near the fire location. Finally, I created a new
launch file which spawns all the required ROS nodes for performing visual servoing. In
the current state machine, we are commanding husky to enter the building, go near the
fire location and then coming back to the base station.

Figure 2: Output of the laser scan on rviz

Integrate UAV (Iris) and AGV (Husky) simulation on Gazebo

ROS uses the MAVROS MAVLink node to communicate with PX4 in the Gazebo simu-
lator. PX4 communicates with the simulator to receive sensor data from the simulated

2



world and send motor and actuator values. It communicates with the GCS and an Off-
board API to send telemetry from the simulated environment and receive commands. So,
I recompiled the PX4 firmware for running the software in loop simulation. To run SITL
wrapped in ROS the ROS environment needs to be updated, then the required script is
launched to start MAVROS on PX4 (publishing IMU sensor data, etc.). And the Gazebo
simulation is modified to integrate sensors publishing directly to ROS topics.
Another major task was to integrate the UAV and AGV simulation in the Gazebo. I
learned the concept of namespace and tf_prefix, which were essential to ensure that the
robots (Husky & Iris) will be able to work independently. So, I created a series of launch
files that enabled us in easily adding robots into our Gazebo simulation. While setting up
the navigation stack, I ensured that both UAV and AGV operates in its own namespace.
To make things more readable I split launch files into few files and created a master launch
file which spawns both the robots. Final video demonstration of the Husky and Iris sim-
ulation in Gazebo can be found here. Both the robots are going towards the building in
the Figure 3.

Figure 3: Husky & Iris in action

Installing Intel Realsense Tracking Camera T265 SDK/drivers on Nvidia
TX2

Readily available Intel tracking camera drivers work for x86 architectures but there are
certain kernel-level modifications required for ARM architecture processor. So, we re-

3

https://drive.google.com/file/d/1q-5j-em9P4YaV_esAIyua9gf5p8uwg8H/view?usp=sharing


patched the ARM kernel but then TX2 was not booting up after modifying the kernel. It
took me 4 hours to realize that the TX2 is not booting up because the HDMI driver ini-
tialization was failing during the bootup. But if the HDMI is connected after TX2 bootup
sequence is finished, the display (monitor) was turning on and TX2 was working as ex-
pected.
After kernel repatch the D400 real sense camera is working and the tracking camera is
getting detected (initialized) but while reading the data from the camera, we were getting
some error related to the onboard temperature sensor (real sense). Now, we got another
modified kernel which is more specific to the tracking camera which we are going to test
next.

Challenges:

Challenges faced in the last two weeks are discussed below:
1. We tweaked multiple ORB SLAM2 parameters to understand its effect on the per-
formance of the SLAM. Since we are still facing scale issues with ORB SLAM2, we are
planning to do Indoor navigation using Intel real sense tracking camera. We tried finding
the scale of the ORB SLAM2 but it changes with the orientation of the husky.
2. Gazebo simulation added noise in the odometry data and it was causing drift in the
husky. This was the case with UAV also and it was drifting towards negative x-axis a lot.
So, the simulation was too realistic and now we are planning to change the covariance
matrix in simulation for minimizing the noise impact.
3. As mentioned in the previous section, we had to be very careful with the namespace for
running UAV and AGV simulation together. We faced multiple issues where UAV was
not publishing the MAVROS data while it’s running along with the husky simulation.
4. We faced multiple issues while installing Intel realsense tracking camera drivers on
Jetson (arm architecture) as it requires kernel re-patching.
5. During testing UR5 arm display controller stopped booting up. We tried debugging
the cause but at the end, we reflashed the new Linux image which resolved the issue.

Teamwork

Akshit mainly worked on the setting up ROS framework for UR5 arm, tracking hot wa-
ter bag, turning on the laser, P controller for the arm and helped Steve in establishing the
ROS serial link between Jetson and Teensy microcontroller board.
Steve worked on designing perception abstraction layer for the simulation. His major
task was to set up the serial interface between the Teensy microcontroller and Jetson TX2
for turning on the laser.

4



Parv was responsible for tweaking and testing ORB SLAM2 on husky. He also designed
the new simulation environment as per the MBZ IRC challenge. We both worked together
in writing & testing user defined missions on husky based on the perception abstraction
framework.
Shubham worked on tracking fire location by visual servoing in the simulation envi-
ronment. He also redesigned the environment such that the husky & Iris can enter the
building. I worked with Parv on writing the state machine for the husky and coordinated
Akshit for writing the state machine for the UAV.

Future plans

1. We are planning to use Intel realsense tracking camera on both UAV and AGV for the
indoor navigation.
2. Our major task is to test user-defined missions in the real world UAV and AGV. This
work will be shared among all our team members.
3. Shubham will be responsible for bringing up the power distribution for the husky.
4. Akshit and Shubham will work on creating a new mount for the attaching payload on
the UAV. Also, we will work together for testing UAV with 1.5 kg payload.
5. Parv and Steve will be primarily responsible for integrating multiple software/hard-
ware blocks on husky.

5


