
MRSD Project 2
Individual Lab Report #08

Parv Parkhiya
October 9th, 2019

Team H:
PhoeniX
Teammates:
Shubham Garg
Akshit Gandhi
Zhihao (Steve) Zhu

Individual Progress

The first thing I worked on was improving the performance of our ROS package of
combining 3 pointclouds. Since the pointclouds from all the Intel Realsense cameras
comes at different times in an asynchronous fashion, we were using a ROS message
filter to create a callback after all three messages are received. We were getting this
output at merely 2 Hz which is not ideal for cost-map generation in the move_base
planner. If process just one pointcloud even if all three cameras are publishing, the
output frequency was 10 Hz. Our intuition was that the message filter that was
synchronizing the incoming messages was stalling the system causing the performance
decrease.

I restructured the code so that it can work with asynchronous messages. This was
achieved by linking ROS subscriber callback functions to a C++ class’s private member
functions that store the incoming pointclouds in the private variable overwriting the
previous value. The output publisher’s loop runs separately which takes current values
in the private variables and combines them without waiting for the incoming messages.

However, when I tested my new code, it made a very minor improvement in terms of
performance. Further investigation revealed that our original intuition that stalling was
the bottleneck of our pipeline is incorrect. Intel NUC simply doesn’t have enough
processing power to deal with 3 pointclouds at a high rate. The system can run 3
cameras in parallel and provide 10 Hz performance as long as not all three cameras are
being subscribed to. ROS by default uses a lazy publishing method, where if no one is
subscribing to a topic, the messages of that topic are not broadcasted in the channel to
save processing. We didn’t know about this earlier which lead us to check the
publishing rate of pointcloud one by one instead of simultaneously.

I also worked on the improvement of the opening detection algorithm. When we tested
our code outdoor, opening detection was poor. The main reason was the Realsense
depth image in the outdoor environment is not as good as the indoor environment
because the infrared projector doesn’t work well outdoors. We were treating each depth
image independently and if there are wrong detections in some of them, it could confuse
the controller. We need to remove the outliers in the detection. I implemented the time
filtering for window detection that removes these outliers. I restructured the code so that
it can store the previous values and then applied the median filter in a computationally
efficient way. Output of which can be seen in figure 1.

Figure 1: Opening Detection after median filtering across time

We started testing the UAV’s ability to visual servo directly in front of the opening, we
realized that drone is not following our velocity control signals. We checked the header,
topic name, frame id, timestamp but nothing helped. I wrote a simple python ROS node
to publish some constant velocity control signal for the debugging purpose. The drone
started to follow those constant commands but not commands from our visual servo
module.

I went through the Airlab’s core stack framework that was providing the interface with
DJI SDK. Velocity commands that we send in the XYZ frame are transformed into Roll
Pitch Yaw thrust and the “twist” message was converted into the “joy” message that DJI
can interpret. After looking through many potential issues, we decided to increase the
publishing frequency from 20 Hz to 50 Hz which allowed the control of the drone using
the visual servo output.

Challenges

The biggest challenge of this progress review was the task of entering through the
opening. We faced many challenges. The first challenge was getting the DJI drone to
respond to our velocity commands. I had to go through a lot of code and documentation
to understand what was happening and what could be potential problems. Debugging
was a long process and required multiple flight tests. For the flight test, we had to
collaborate with Lucas who was confident in flying the DJI drone indoors.

Once the drone started responding to our control signals, we tested our visual servoing
code. It somewhat worked but not always and not robustly. Entering through the
opening is a very difficult skill for a drone and we can’t risk testing the same if visual
servoing is not perfect. Even with the help of tags, visual servoing method was
struggling to get right in front of the opening. We spend multiple days trying to improve
the visual servoing and find the potential issues but we simply ran out of time and
decided to try a different approach in the next progress review.

Figure 2: Visual Servoing in front of the opening

Teamwork

Akshit and I worked with doing the DJI drone flight test to align the drone in front of the
opening. (As seen in figure 2) The drone test always requires a lot of pre and post work
related to setting up the environment (opening) and setting up the drone. Shubham
mainly worked on state estimation integration of IMU and tracking camera. I helped him
in how to set up and run the "gmapping" module and move_base planner. Steve was
working with door detection for husky. We brainstormed multiple ideas on how to make
it work on depth images. Finally decided to move towards using pointcloud instead of
depth images. I also collaborated with all the MBZIRC team members in creating the
submission video and submission report which was an urgent requirement.

Future Plans

I will be working on figuring out what would be our improved deploying mechanism,
especially for UAV. I will lead the effort in the procurement of the hardware and creating
mounts for attaching it with UAV and AGV. I will work with Shubham in cleaning up the
Husky’s software so that we don’t have to run 10 things separately. I will work on writing
a small module that can provide the surface normal of the wall from the pointcloud.
Akshit and I will explore the pose controller along with a simple mission-based approach
(instead of visual servoing) of the Airlab’s core stack to opening achieving entering
through the opening for UAV. I will also help Shubham perform the full Husky missions.
As a team, we faced a bit of a setback in terms of visual servoing not working as
expected. We plan to execute an alternative approach to overcome this hurdle in the
upcoming weeks.

