
ILR01 - Sensors and Motor Control Lab

Justin Morris
Teammates: Awadhut Thube, Alex Withers

Team G: The Pit Crew

February 13, 2020

1

1 Individual Progress

1.1 Sensors and Motor Control Lab
My major contribution to the Sensors and Motor Control lab project was the design and implementation of the
GUI. I used the Processing language to develop an application that provided a graphical interface to display sensor
and motor data from the Arduino and control and adjust the behavior of the motors.

The Processing application communicated with the Arduino through a serial buffer. Both programs sent and
received messages over this serial buffer. The messages were formatted as a single letter followed by a number,
and the Arduino and Processing programs parsed these messages according to a scheme that I defined.

Arduino to GUI GUI to Arduino
Stepper Motor Position s### Servo Motor Step Size t###
Infrared Sensor Reading i### DC Motor Direction d#

Servo Motor Position r### DC Motor Position p###
Force Sensor Reading n### DC Motor Velocity v###
DC Motor Position p###
DC Motor Velocity v###

Table 1: Allowed formats for messages sent between the program running on the Arduino and the program running
on the laptop.

The visual elements of the GUI were designed to communicate the behavior of the Arduino’s physical compo-
nents in a logical and clear way. These features can be seen in Figure 1 on the next page.

The horizontal bar at the top of the GUI window (1) was used to display the distance reading received from
the infrared sensor in cm. This feature was implemented using the IFProgressBar class available through the
Interfascia library for Processing.

Immediately below that are the GUI elements related to the servo motor and force sensor. The circular element
on the left (2) functions as a ”warning light” that changes color when the readings from the force sensor exceed
the threshold for actuating the servo motor. Directly below this warning light is a numerical readout showing the
force detected by the sensor. The semicircle to the right (3) shows the range of positions that the servo motor
can reach. The blue arc within that semicircle shows the motor’s current position (the counterclockwise edge
of the arc) and the size of the step that the motor will take when the force sensor is activated. Just below the
semicircle is a text field in which an operator can enter in a number which dictates the number of degrees that
the motor will rotate with each step.

All features in the lower half of the GUI window relate to the DC motor, which is controlled primarily through
the GUI. The radio buttons on the left side (4), again implemented with the Interfascia library, allow the user to
select between two modes of controlling the DC motor. Depending on the mode, the user can either command
the DC motor to move to relative positions (i.e. -180 degrees from its current position) or rotate continuously at
a given velocity. Regardless of mode, the desired value is entered into the text field immediately to the right of
the radio buttons (5). The new instruction is sent to the Arduino when the ”Update” button is pressed. As soon
as a new command is sent to the Arduino, the graph (6) displays both the desired value and the actual position
or velocity of the motor, so that the user can confirm that the actual motor state is converging to the desired
value. The graph was created using the Grafica library.

2

Figure 1: The GUI, with important elements highlighted: (1) Bar showing IR sensor distance reading; (2) indicator
light showing when force sensor crosses force threshold, with numerical readout of force; (3) servo motor position
display and step size input field; (4) mode selection for DC motor control; (5) input field for DC motor positions
and velocities; and (6) graph showing that DC motor tracks desired input.

1.2 Pit Navigator
Much of the work that I have done with regard to the Pit Navigator project thus far has been about refining our
top development priorities and taking stock of related work that is available for us to build on. In practice, this
has meant meeting with other people involved in the MoonRanger/PitRanger project and reviewing established
codebases developed during earlier stages of the project.

I was able to spend some time with a robot called Blue that was built by Jordan Ford and Neil Khera as a
platform for collecting camera data for PitRanger development. Blue has a skid-steer drive system and is similar
in size to the future flight rover, so we intend to use Blue for our testing as much as possible. Some code to drive
Blue and operate its RealSense camera has already been written by other people involved with the MoonRanger
project, so I am evaluating that code to determine how it meshes with our needs.

Another existing code resource that we intend to use as a stepping stone is a project done by Neil Khera
last semester on the topic of brinkmanship. Brinkmanship is the act of operating close to an edge (in this case
the edge of the pit). Neil’s project used depth readings from a RealSense camera to detect dangerous edges
and prevent an AutoKrawler robot from driving over those edges. We intend to further develop this concept by
detecting edges using only stereo image data (since we cannot use a RealSense camera on the moon) and increase
the sophistication of the safety criteria used to influence the rover’s behavior. As a first step in that process, I

3

have been communicating with Neil about his work and reviewing his code to understand how he implemented
the brinkmanship functionality.

Lastly, I have been studying available methods for detecting features in stereo image data. We continue to
anticipate that detecting pit edges in our images will be a major aspect of our project. To that end, it is important
that we familiarize ourselves with the existing methods for accomplishing this sort of task, and I personally cannot
rely solely on the Computer Vision course to provide the relevant information at the pace or depth that the MRSD
project demands.

2 Challenges

2.1 Sensors and Motor Control Lab
In the Sensors and Motor Control lab, I had the challenge of discovering how to implement GUI features in the
Processing language that would clearly communicate the sensor and motor values that we were operating on,
and allow a user to affect those values in a logical way. This required me to delve into several of the external
libraries that exist for use with Processing, some of which had minimal or incomplete documentation. Luckily,
these libraries provided access to their source code, so in the worst case I could delve into the underlying class
files and discern how the libraries functioned in that way.

As a group, we were faced with the challenge of using relatively cheap components, which naturally placed
a limit on the accuracy and resolution of our controls. However, my group members were able to minimize
the negative effects of this issue by using their knowledge of signal processing and PID control to improve the
responses of the motors to our inputs.

2.2 Pit Navigator
The most obvious challenge we have faced thus far has been that there are only three of us, and we have many
commitments that we have to balance. This is helped greatly by the fact that there are various other people
and groups working on other aspects of this project alongside us, but this situation presents its own challenges.
We must integrate and compile the work that has already been done, some of which is poorly documented and
organized. We also must occasionally compete with these other contributors for access to test platforms like Blue
and the AutoKrawlers.

Another challenge that I have personally faced is that this project has a large computer vision component,
and I do not have much experience in that area. I am currently taking the Computer Vision course (16-720),
but the pace of that course does not necessarily match the schedule of this project. I am having to improve my
knowledge in this area independently in order to achieve the goals of the Pit Navigation project.

3 Teamwork

3.1 Sensors and Motor Control Lab
While I worked on developing the GUI, Awadhut and Alex split the work of wiring the circuits and writing the
Arduino code to link the sensor data and motor responses. They began by writing separate programs on different
Arduino boards, then combined those programs into a single program that operated all the functions. We all
collaborated to come up with logical and interesting ways to control motor behavior using the sensors available
to us, and transmit that information between the laptop GUI and the Arduino program. Combining each aspect
of the lab resulted in some time spent chasing down bugs and miscommunications, but that is to be expected,
and overall it was a very successful and supportive process.

4

3.2 Pit Navigator
Because of his prior experience in computer vision, Awadhut has taken the initiative in experimenting with applying
various feature detection methods to a data set of images taken of a pit in Utah that is ostensibly analagous to
the conditions on the moon. While his conclusion has been that detecting pit shape solely from image data is
a difficult and potentially impossible task, it has been very helpful to have data to support that conclusion this
early on in the project. He has also helped me to deepen my own understanding of computer vision as I work
alongside him on this task.

Alex has been hard at work familiarizing himself with the simulator used by the MRSD team that worked on
a related project last year. Since we intend to do much of our early work in a simulated environment, it is crucial
that we have a detailed and realistic simulation of a lunar pit. We want to build on the work already done in this
area by the previous team and others within the MoonRanger organization. I appreciate that Alex has made this
a priority.

4 Plans

4.1 Pit Navigator
Our intent in the coming weeks is to attack this project on two fronts. We will continue to develop the simulator,
and construct an environment in which a simulated robot can navigate around a lunar pit and collect images of its
surroundings. Meanwhile, we will collaborate with others in the MoonRanger organization to get Blue to a point
where we can drive it around and capture images using the RealSense camera. In particular, we intend to take
Blue to Gascola, an external site that has some terrain which we can use to test brinkmanship routines or collect
edge data that we can experiment with as we further develop our software. This latter task will be primarily my
responsibility.

5 Quiz

5.1 Question 1 - Reading a Datasheet
1. What is the sensor’s range? 6g

2. What is the sensor’s dynamic range? ±3g

3. What is the purpose of the capacitor CDC on the LHS of the functional block diagram on p. 1?
How does it achieve this? It prevents the accelerometer readings from being affected by noise from the
voltage source by resisting sudden changes in voltage.

4. Write an equation for the sensor’s transfer function. Vout = 1.5V + (300mV/g) ∗ a

5. What is the largest expected nonlinearity error in g? 0.018g

6. How much noise do you expect in the X- and Y-axis sensor signals when the sensor is excited at
25 Hz? 750µg

7. How about at 0 Hz? If you can’t get this from the datasheet, how would you determine it
experimentally? The relation given in the datasheet does not hold at 0 Hz. To determine this value
experimentally, one could measure sensor readings when no signal is being input.

5

5.2 Question 2 - Signal Conditioning

5.2.1 Filtering

Moving average filters will not filter out large outliers, and may overemphasize old data points (unless the filter
uses a weighted average).
Median filters require knowledge of the sorts of outliers that can be expected in order to set the window size
properly, and may slow the signal processing down due to the calculation required to determine the median.

5.2.2 Op-Amps

Case 1: Vref = −3V , Rf

Ri
= 1

Case 2: The calibration cannot be done with this circuit. The calibration requires a unity gain and an offset of
+2.5V , and no ratio of resistances can provide that in this circuit configuration (the only solution to the system
of equations requires a negative resistance, which is impossible).

5.3 Question 3 - Control
Proportional Control: To form a digital input for proportional control, take the difference between the current
state and the desired state of the system at each time step, then multiply that value by some constant Kp and
use that as your input for the next time step. If a system is responding sluggishly, increasing the proportional
term will cause the system to react more aggressively to being far away from the goal state.
Integral Control: To form a digital input for integral control, sum the error of the system from the past several
time steps, then multiply the resulting value by some constant Ki and provide that to the plant as an input. If a
system has significant steady-state error after the proportional and derivative gains have been tuned, the integral
gain can be increased to move the steady-state value closer to the desired state. This works because the integral
term adjusts the system based on its previous states, so if error exists in those states it will increase the effect of
the integral term.
Derivative Control: To form a digital input for derivative control, take the difference of system errors between
the current and previous time steps. Multiply this difference by a constant Kd and use that value to control your
system during the next time step. If a system is demonstrating overshoot, the derivative gain should be adjusted
to compensate. The derivative term reacts to the rate of change of the system, and can therefore be used to
dampen the system response from the P and I terms. Proper damping will allow the system to reach its goal
state quickly but with minimal overshoot or oscillation.

6 Sensors and Motor Control GUI Code

import i n t e r f a s c i a . ∗ ; // P r o v i d e s GUI e l ement s
import g r a f i c a . ∗ ; // P r o v i d e s p l o t s

import p r o c e s s i n g . s e r i a l . ∗ ;

G U I C o n t r o l l e r c ;
I F P r o g r e s s B a r p ; // D i s p l a y IR s e n s o r r e a d i n g
I F L a b e l f o r c e r e a d i n g ; // D i s p l a y f o r c e s e n s o r r e a d i n g
I F T e x t F i e l d s e r v o s t e p t f , d c t f ; // F i e l d f o r i n p u t t i n g motor s t ep s i z e
I F R a d i o C o n t r o l l e r r c ; // Radio button c o n t r o l l e r
IFRad ioButton d c p o s c o n t r o l , d c v e l c o n t r o l ; // Radio bu t ton s f o r s e t t i n g DC c o n t r o l mode

6

IFButton bGo ; // Set new v a l u e f o r DC motor c o n t r o l
GPlot p l o t ;

i n t pbarhpos , pbarwid ; // P r og r e s s bar p o s i t i o n and width
f l o a t pnumpos , pnumpos2 , pnumwid ; // P r og r e s s bar number p o s i t i o n and width
f l o a t p e r c e n t = 0 . 5 ; // P r og r e s s bar f i l l p e r c en t age
PFont prog ;

boolean f t = f a l s e ;
f l o a t f o r c e = 0 ;

i n t mposvpos = 2 7 5 ;
boolean s e r v o s t e p c h a n g e = true ;
f l o a t arcpos , arcwid , a rcwid temp ; // Motor p o s i t i o n and s t ep s i z e
S t r i n g aw = ” 45 ” ; // D e f a u l t motor s t ep s i z e t e x t f i e l d c o n t e n t s
i n t a w i n t ; // Motor s t ep s i z e

i n t d c r a d b u t h p o s ; // Radio button h o r i z o n t a l p o s i t i o n
i n t d c t f h p o s ; // Text f i e l d h o r i z o n t a l p o s i t i o n
i n t bGohpos ; // Button p o s i t i o n
i n t d c m i d l i n e ; // H o r i z o n t a l c e n t e r l i n e f o r a l l DC−r e l a t e d e l ement s

boolean t r a c k e r r o r , t r a c k e r r o r s t a r t , p o s c o n t r o l ;
S t r i n g d c g o a l = ” ” ;
S t r i n g out = ” ” ;
f l o a t g o a l = 5 0 ;
i n t a r r l e n = 1 0 0 ;
i n t p o i n t c o u n t = 0 ;
G P o i n t s A r r a y g o a l s = new G P o i n t s A r r a y () ;
G P o i n t s A r r a y a c t u a l = new G P o i n t s A r r a y () ;

f l o a t s t e p p e r p o s , i r d i s t , s e r v o p o s , d c p o s e r r , d c v e l ;

S e r i a l p o r t ;
S t r i n g s e r i a l d a t a ;

void s e t u p () {
s i z e (1000 , 8 0 0) ; // Window s i z e
background (1 5 5) ; // Background c o l o r

pbarhpos = width / 6 ; // P r og r e s s bar h o r i z o n t a l l o c a t i o n (l e f t edge)
pbarwid = width ∗2 / 3 ; // P r og r e s s bar width
pnumwid = t ext Wi dt h (n f (p e r c e n t , 1 , 2)) ; // P r og r e s s bar number width
pnumpos = pbarhpos + (pbarwid ∗ p e r c e n t) − (pnumwid / 2) ; // P r og r e s s bar number h o r i z o n t a l l o c a t i o n
pnumpos2 = pnumpos ;

d c r a d b u t h p o s = width / 1 2 ;

7

d c t f h p o s = (width ∗5 / 2 4) ;

bGohpos = (width / 3) − 2 5 ; // ”Go” button h o r i z o n t a l l o c a t i o n
d c m i d l i n e = h e i g h t ∗ 3 / 4 ; // ”Go” button v e r t i c a l l o c a t i o n

// I n i t i a l i z e v a l u e s o f Ardu ino i n p u t v a r i a b l e s
s t e p p e r p o s = 0 ; // Steppe r motor p o s i t i o n
s e r v o p o s = 0 ; // Servo motor p o s i t i o n TODO: change d e f a u l t
d c p o s e r r = 0 ; // DC motor p o s i t i o n
d c v e l = 0 ; // DC motor v e l o c i t y
i r d i s t = (p e r c e n t ∗ 120) + 2 0 ; // IR s e n s o r d i s t a n c e r e a d i n g

prog = c r e a t e F o n t (” Ubuntu ” , 1 2 , true) ;

// GUI e l ement c o n s t r u c t o r s
c = new G U I C o n t r o l l e r (t h i s) ;

r c = new I F R a d i o C o n t r o l l e r (”DC Mode S e l e c t o r ”) ;

bGo = new IFButton (” Update ” , bGohpos , d c m i d l i n e , 50 , 1 7) ; // ”Go” button

p = new I F P r o g r e s s B a r (pbarhpos , 120 , pbarwid) ; // IR d i s t a n c e d i s p l a y

f o r c e r e a d i n g = new I F L a b e l (” ” , width ∗5/12 − 15 , mposvpos +25);

s e r v o s t e p t f = new I F T e x t F i e l d (” Arc Width ” , width ∗7/12 − 20 , mposvpos +25, 40 , ” 45 ”) ; // Servo s t ep s i z e i n p u t f i e l d

d c p o s c o n t r o l = new IFRad ioButton (”DC P o s i t i o n ” , d c r a d b u t h p o s , d c m i d l i n e − 30 , r c) ;
d c v e l c o n t r o l = new IFRad ioButton (”DC V e l o c i t y ” , d c r a d b u t h p o s , d c m i d l i n e + 30 , r c) ;

d c t f = new I F T e x t F i e l d (”DC Motor I n p u t ” , d c t f h p o s , d c m i d l i n e , 40 , ”0”) ; // DC motor i n p u t f i e l d

p l o t = new GPlot (th i s , w idth ∗ 5/12 , 350 , width / 2 , width ∗ 5 / 1 2) ;

t r a c k e r r o r = f a l s e ;
t r a c k e r r o r s t a r t = f a l s e ;
p o s c o n t r o l = f a l s e ;

// Add two s e t s o f p o i n t s to the p l o t
g o a l s . add (0 , g o a l) ;

a c t u a l . add (0 , 0) ;
p o i n t c o u n t ++;

p l o t . s e t P o i n t s (g o a l s) ;
p l o t . addLayer (” a c t u a l ” , a c t u a l) ;

// Change the c o l o r o f the p o i n t s i n the f i r s t l a y e r

8

p l o t . s e t P o i n t C o l o r (c o l o r (100 , 220 , 1 0 0)) ;

// A c t i o n L i s t e n e r s to re spond to button p r e s s e s
bGo . a d d A c t i o n L i s t e n e r (t h i s) ;

// Add GUI e l ement s to GUI
c . add (bGo) ;
c . add (p) ;
c . add (f o r c e r e a d i n g) ;
c . add (s e r v o s t e p t f) ;
c . add (d c p o s c o n t r o l) ;
c . add (d c v e l c o n t r o l) ;
c . add (r c) ;
c . add (d c t f) ;

// Set i n i t i a l p r o g r e s s bar f i l l p e r c en t age
p . s e t P r o g r e s s (p e r c e n t) ;

// Open s e r i a l po r t a t speed 9600 bps
p o r t = new S e r i a l (th i s , S e r i a l . l i s t () [0] , 9 6 0 0) ;

}

void draw () {
background (1 5 5) ;

// I f t h e r e i s data i n S e r i a l b u f f e r , pa s s i t to p a r s e S e r i a l D a t a ()
i f (0 < p o r t . a v a i l a b l e ()) {

s e r i a l d a t a = p o r t . r e a d S t r i n g U n t i l (’ ; ’) ;
p a r s e S e r i a l D a t a (s e r i a l d a t a) ;

}

// Set p r o g r e s s bar f i l l p e r c en t age
p . s e t P r o g r e s s (p e r c e n t) ;

// Update p r o g r e s s bar number
pnumwid = t ext Wi dt h (n f (p e r c e n t , 1 , 2)) ;
pnumpos = pbarhpos + (pbarwid ∗ p e r c e n t) − (pnumwid / 2) ;

pnumwid = t ext Wi dt h (n f (i r d i s t , 1 , 2)) ;
pnumpos2 = pbarhpos + (pbarwid ∗ p e r c e n t) − (pnumwid / 2) ;

t e x t F o n t (prog , 1 2) ;
f i l l (0) ;
t e x t (n f (p e r c e n t , 1 , 2) , pnumpos , 1 1 8) ;
t e x t (n f (i r d i s t , 1 , 2) , pnumpos2 , 1 4 7) ;

f o r c e r e a d i n g . s e t L a b e l (n f (f o r c e) + ” g”) ;

9

f o r c e r e a d i n g . setX (width ∗5/12 − (f o r c e r e a d i n g . getWidth () / 2)) ;

// Turn ” warn ing l i g h t ” on i f f o r c e s e n s o r / po t en t i onme t e r v a l u e exceed s t h r e s h o l d
i f (f t) {

f i l l (2 5 5 , 1 2 8 , 0) ;
} e l s e {

f i l l (1 0 , 10 , 1 0) ;
}
e l l i p s e (width ∗5/12 , mposvpos − 15 , 30 , 3 0) ; // ” Warning l i g h t ”

// Remove l e a d i n g / t r a i l i n g spac e s from t e x t f i e l d c o n t e n t s
aw = t r i m (s e r v o s t e p t f . g e t V a l u e ()) ;

// Conver t t e x t f i e l d c o n t e n t s to i n t e g e r
i f (aw == n u l l | | aw . e q u a l s (” ”)) {

a w i n t = 0 ;
} e l s e {

a w i n t = I n t e g e r . p a r s e I n t (aw) ;
}

// Set motor p o s i t i o n and motor s t ep s i z e
a r c p o s = ((s e r v o p o s / 180) ∗ PI) + PI ;
a rcw id temp = a r c w i d ;
a r c w i d = (a w i n t ∗ PI) / 1 8 0 ;
i f (a r c w i d != arcwid temp) {

s e r v o s t e p c h a n g e = true ;
}

// Send s e r v o motor data through s e r i a l po r t
i f (s e r v o s t e p c h a n g e) {

p o r t . w r i t e (” t ” + n f (a w i n t) + ” ; ”) ;
s e r v o s t e p c h a n g e = f a l s e ;

}

// Draw motor p o s i t i o n and s t ep s i z e d i s p l a y
f i l l (0) ;
a r c (width ∗7/12 , mposvpos , 100 , 100 , PI , 2∗PI , PIE) ;

// Update motor p o s i t i o n and s t ep s i z e i n d i s p l a y
f i l l (0 , 128 , 2 5 5) ;
a r c (width ∗7/12 , mposvpos , 100 , 100 , max (arcpos , PI) , min (a r c p o s+arcwid , 2∗PI) , PIE) ;

// Remove l e a d i n g / t r a i l i n g spac e s from t e x t f i e l d c o n t e n t s
d c g o a l = t r i m (d c t f . g e t V a l u e ()) ;

i f (t r a c k e r r o r) {
GPoint c u r g o a l = new GPoint (p o i n t c o u n t , g o a l) ;

10

p l o t . addPoint (c u r g o a l) ;

i f (p o s c o n t r o l) {
GPoint c u r a c t u a l = new GPoint (p o i n t c o u n t , g o a l − d c p o s e r r) ;
p l o t . addPoint (c u r a c t u a l , ” a c t u a l ”) ;

} e l s e {
GPoint c u r a c t u a l = new GPoint (p o i n t c o u n t , d c v e l) ;
p l o t . addPoint (c u r a c t u a l , ” a c t u a l ”) ;

}
p o i n t c o u n t ++;

i f (p o i n t c o u n t > a r r l e n) {
p l o t . removePoint (0) ;
p l o t . removePoint (0 , ” a c t u a l ”) ;

}
}

// Send DC motor data out through s e r i a l po r t
i f (t r a c k e r r o r s t a r t) {

i f (g o a l >= 0) {
i f (p o s c o n t r o l) {

out = ”d” + n f (1) + ” ; p” + n f (g o a l) + ” ; ” ;
} e l s e {

out = ”d” + n f (1) + ” ; v ” + n f (g o a l) + ” ; ” ;
}

} e l s e {
i f (p o s c o n t r o l) {

out = ”d” + n f (0) + ” ; p” + n f (abs (g o a l)) + ” ; ” ;
} e l s e {

out = ”d” + n f (0) + ” ; v ” + n f (abs (g o a l)) + ” ; ” ;
}

}
p o r t . w r i t e (out) ;

}

i f (p o i n t c o u n t > a r r l e n ∗ 10 | | t r a c k e r r o r s t a r t | | ! t r a c k e r r o r) {
i f (t r a c k e r r o r s t a r t) {

t r a c k e r r o r = true ;
} e l s e {

t r a c k e r r o r = f a l s e ;
}
t r a c k e r r o r s t a r t = f a l s e ;
g o a l s . s e t (0 , new GPoint (0 , g o a l)) ;
a c t u a l . s e t (0 , new GPoint (0 , 0)) ;

p l o t . s e t P o i n t s (g o a l s) ;
p l o t . removeLayer (” a c t u a l ”) ;

11

p l o t . addLayer (” a c t u a l ” , a c t u a l) ;
p o i n t c o u n t = 1 ;

}

p l o t . beginDraw () ;
p l o t . drawBackground () ;
p l o t . drawBox () ;
p l o t . drawXAxis () ;
p l o t . drawYAxis () ;
p l o t . d r a w R i g h t A x i s () ;
p l o t . d r a w T i t l e () ;
p l o t . getMainLayer () . d r a w P o i n t s () ;
p l o t . g e t L a y e r (” a c t u a l ”) . d r a w P o i n t s () ;
p l o t . endDraw () ;

}

void a c t i o n P e r f o r m e d (GUIEvent e) {
// Checks i f but ton has been p r e s s ed , and e n a b l e s e r r o r p l o t i n a p p r o p r i a t e mode

i f (e . g e t S o u r c e () == bGo) {
i f (! (d c g o a l == n u l l | | d c g o a l . e q u a l s (” ”))) {

i f (d c p o s c o n t r o l . i s S e l e c t e d ()) {
t r a c k e r r o r s t a r t = true ;
p o s c o n t r o l = true ;
g o a l = I n t e g e r . p a r s e I n t (d c g o a l) ;

} e l s e i f (d c v e l c o n t r o l . i s S e l e c t e d ()) {
t r a c k e r r o r s t a r t = true ;
p o s c o n t r o l = f a l s e ;
g o a l = I n t e g e r . p a r s e I n t (d c g o a l) ;

} e l s e {
t r a c k e r r o r s t a r t = f a l s e ;
t r a c k e r r o r = f a l s e ;
p o s c o n t r o l = f a l s e ;

}
} e l s e {

t r a c k e r r o r s t a r t = f a l s e ;
t r a c k e r r o r = f a l s e ;
p o s c o n t r o l = f a l s e ;

}
}

}

void p a r s e S e r i a l D a t a (S t r i n g data) {
S t r i n g [] coms = s p l i t (data , ’ , ’) ;

i f (coms == n u l l) {
return ;

}

12

f o r (i n t c = 0 ; c < coms . l e n g t h ; c++) {
S t r i n g cmd = coms [c] . t r i m () ;

i f (cmd == n u l l | | cmd . e q u a l s (” ; ”)) {
return ;

}

char t y p e = cmd . charAt (0) ;
i n t v a l = i n t (cmd . s u b s t r i n g (1 , cmd . l e n g t h () −1)) ;

switch (t y p e) {
case ’ s ’ :

s t e p p e r p o s = v a l ;
break ;

case ’ i ’ :
i r d i s t = v a l ;
p e r c e n t = (i r d i s t − 20) / 1 2 0 ;

// R e s t r i c t s v a l u e o f p e r c e n t to between 0 and 1
p e r c e n t = max (0 , min (1 , p e r c e n t)) ;
break ;

case ’ r ’ :
s e r v o p o s = v a l ;
break ;

case ’ n ’ :
f o r c e = v a l ;
i f (f o r c e > 3) {

f t = true ;
} e l s e {

f t = f a l s e ;
}
break ;

case ’ p ’ :
d c p o s e r r = v a l ;
break ;

case ’ v ’ :
d c v e l = v a l ;
break ;

d e f a u l t :
break ;

}
}

}

13

