
Progress Review - 1
Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

16 February, 2022

Autonomous Reaming for Total
Hip Replacement (ARTHuR)

2
Hipster 2022 © All Rights Reserved

Schedule

3
Hipster 2022 © All Rights Reserved

Progress Review #1 Tests

✓ Atracsys SDK Setup
✓ Camera Setup Test
✓ Marker Pose Detection
✓ Documentation

Perception and Sensing

Perception and Sensing

Perception and Sensing

Further Updates
✓ Registration
✓ Controls
✓ Simulation
✓ Hardware

Planning and Controls

Hardware

Perception and Sensing

Planning and Controls

Perception and Sensing

PR #1 Tests

Motivation: Cameras are generally shipped with ROS packages that allow the

camera to be easily interfaced with ROS Nodes. With the Atracsys camera, we are

only provided with an SDK that can be used to retrieve measurements.

Goal: Read camera measurements from a ROS Node. The outcome of this task is

merely a proof-of-concept and further optimizations/improvements in the code will

follow.

Motivation and Goal

Figure: Atracsys SpryTrack 300

Atracsys SDK Setup: Overview

Figure: Atracsys Demo GUI

Camera Setup Test: Overview

Figure: Atracsys Camera Setup

Figure: Power Injector for Camera

Camera Setup Test: Approaches

SNo. Approach Pros Cons

1 Use ROS-IGTL-Bridge - Well tested option - Tested on an older ROS
version.

- Little documentation on
compatibility with Atracsys.

2 Run Atracsys SDK as a
standalone application and
communicate with ROS via
Sockets

- Sufficient
documentation
available online

- New to socket programming,
steep learning curve.

3 Link Atracsys Library Files with
ROS Node using CMake

- Can be implemented
with prior C++/CMake
experience

- Simplifies the
Perception subsystem
architecture

- No need to integrate

- CMake is complicated and
hard to get right

- If a new version of the SDK is
released, static linking may
require our codebase to be
recompiled.

Camera Setup Test: Procedure and Setup

Figure: Geometry File

Figure: Marker with 3 Fiducials

Camera Setup Test: Validation

Validation #1

Validation #1

Validation #2

Validation #2

■ Challenge 1. Compilation Errors
✓ Problem in compiling Atracsys SDK source files along with ROS Nodes. Switched to direct

linking of library files.

■ Challenge 2. Undefined References
✓ Resolved by re-evaluating linking of files, correcting path errors, changing directory

permissions.

■ Challenge 3. Unclear of the differences between various library files in C++

(.a and .so)
✓ Resolved by referring to tutorials and discussion forums online.

Camera Setup Test: Challenges

3 major documents created.

Camera Setup Test: Documentation

Marker Pose Detection: Overview

Marker Pose Detection: Validation

Validation #1

Validation #1

Validation #2

Validation #2

Validation #3

Validation #3

Further Updates

Registration: Overview
Objective:

Find the rigid transformation parameters g
(rotation matrix R ∈ SO(3) and translation
vector t ∈ R3) which best aligns the point
cloud X to Y, such that the distance metric d
is minimized.

Source Type: Cross-source

1. Source 1: 3D scan of Pelvis from
Kinect Sensor

2. Source 2: Points obtained using
Registration Marker

Tools Used: Open3D/Python
Figure: Registration Methods Overview

Optimization Based Registration Methods
● Iterative Closest Point (ICP)

○ Widely used; extensive support available with Open3D
○ Correspondence and Transformation Estimation
○ Significant post processing for handling cross-source data
○ RANSAC used for refinement
○ Local & Global Registration

■ Local: Approximate Initial Transformation Provided
■ Global: Transformation Initialized with Identity Matrix

○ Variation based on distance metric used:
■ Minimize Point-point distance
■ Minimize Point-plane distance Figure: ICP Registration Overview

Preliminary Registration Results with ICP

Cross - Source Challenges

● Noise and outliers: Due to different sensor types, acquisition environments
● Partial Overlap: Only possible to retrieve the surface of the acetabulum
● Density Difference: Due to different imaging resolutions

Figure: Two Pointclouds Initialized Figure: Result after RANSAC and
upsamplingFigure: ICP Registration after

Downsampling

Figure: Cross-Registration ICP

Open3D - ROS Integration

Global Registration

Sample Collection using
Registration Probe

Convert Pelvis Mesh File
Model to PointCloud &
Downsample

Transform
Refinement with
RANSAC

Suggestions on Registration Algorithms? Some options we’ve
tried:

● Local & Global Registration with Iterative Closest Point
(ICP) + Refinement with RANSAC

Controls: High-Level Control Diagram
Z

Y

● MPC- Model Predictive Control; constraints - Limit force applied by end-effector, limit

velocity, make sure xy positions are within tolerance

Controls: Optimal Control Problem Setup

Initial draft of optimal control

problem that MPC will solve;

using OSQP to solve the

optimal control problem

URDF: Refinement & Simulation Setup

Before After

Attach transmission + hardware interfaces + controllers at each joint

Controls: Link-6 Joint Trajectory Control in Simulation

https://docs.google.com/file/d/1IZLXkTkwgg8MBSWWzdrKr8Am4cZCZjut/preview
https://docs.google.com/file/d/1IZLXkTkwgg8MBSWWzdrKr8Am4cZCZjut/preview

Hardware: Reaming Handle

Hardware: End-Effector Reaming Mount

Ideas:
● Slot and Spring

○ Similar to marker mount on
reaming handle

○ Marker pin would be under stress
● Bolted around marker pin

○ Two halves around the pin bolted
together

● Clamp around the circular shaft
○ Use screws to tighten the clamp

● Set screws
○ Set screw onto circular shaft

tightly

Hardware: End-Effector Reaming Mount

Hardware: Robot Manipulator

UR5
● Available from Professor

Kroemer for “majority” of
project

Kinova Gen3
● Availability from

Sponsor TBD

Future Work

Thank you!

