Team C Spring 2022 Test Plan

Autonomous Reaming for Total Hip Replacement

HIPSTER | ARTHuR

Team C:

Anthony Kyu | Gunjan Sethi | Kaushik Balasundar Parker Hill | Sundaram Seivur

February 14th, 2022

Contents

1	Introduction	1
2	Logistics	1
3	Schedule	2
4	Tests	3
	4.1 Test 1	3
	4.2 Test 2	3
	4.3 Test 3	4
	4.4 Test 4	4
	4.5 Test 5	5
	4.6 Test 6	5
	4.7 Test 7	6
	4.8 Test 8	6
	4.9 Test 9	7
	4.10 Test 10	7
	4.11 Test 11	8
	4.12 Test 12	8
	4.13 Test 13	9
	4.14 Test 14	9
	4.15 Test 15	10
	4.16 Test 16	10
	4.17 Test 17	11
	4.18 Spring Validation Experiment	12
5	Appendix	14
	5.1 Functional and Performance Requirements	14
	5.2 Non-functional Requirements	15

1 Introduction

This document describes the various tests to be performed on the Hipster system (and subsystems in simulation/reality) throughout the fall semester in order to validate and verify that the system and subsystems are meeting stated functional and performance requirements. The tests are designed such that there is an incremental increase in the complexity of the test and the necessary state of the system in order to properly perform the task, which will provide a good deadline for finishing functionalities. The results of these tests will be reported during the progress reviews. Each test has a name/number, an objective, elements, a location, equipment, personnel, procedure, and verification criteria. By the spring validation experiment, our full reaming system should be functioning in simulation and all subsystems should be working in reality without integration.

2 Logistics

All of these tests as well as the Spring Validation Demonstration will take place in Newell-Simon Hall in room B512. The Spring Validation Demonstration will be presented via a live demo, while the rest of the plans will be demonstrated via videos or reports on the results of the tests during progress reviews. All team members will be present for the Spring Validation Demonstration, and while it would be ideal for all members of the team to be present for all tests, it is only be necessary for the system lead and one other person to be present during the testing. The following equipment would be necessary for the majority of our tests:

- Desktop Workstation: necessary for interfacing with the robot manipulating
- Monitor: necessary for displaying GUI information and camera output
- Robot arm: manipulator arm coupled with a custom reaming end-effector
- Atracsys camera: camera which can detect the location of marker arrays and computer their location into transformations
- IR markers: markers which can be detected by the Atracsys camera
- Marker arrays: arrays which hold the IR markers in unique orientations such that they can be detected by the Atracsys camera
- Vention table: rigid table for the robot arm and all tasks to be performed upon
- Sawbone pelvis: foam replica of a pelvis to be used with physical validations of the system
- Panavise mount: vise to hold pelvis during testing

Further equipment for specific tests will be specified in the testing plans. Some of these performance requirements and tests are subject to hardware we plan on receiving, and given the uncertain nature of our hardware acquisition currently, some of these requirements and tests may change.

3 Schedule

Schedule			
Identifier	Capability Milestone(s)	Associated Tests	System Requirement
Progress Review 1 2/16/2022	- Integration of the camera with ROS and the ability to detect marker poses in Atrascys SDK	Test 1	M.F.1
Drawing Davisur (- Markers can be read into ROS and create a point cloud comparable to the pelvis geometry	Test 2 Test 3	M.F.1
Progress Review 2 3/2/2022	- Control method is capable of being used with robot manipulator virtually	Test 4	M.F.3 M.N.1
		Test 13	-
	 Probe is able to be used to create a point cloud which can be visualized 	Test 5	M.E.1
Progress Review 3 3/23/2022	- Waypoint and trajectory generation working in ROS	Test 11	M.F.2
	- Hardware verified for use in reamer assembly	Test 17	
	 Probe is able to create a point cloud which is comparable to the pelvis geometry 	T-10	M.F.1
	 Waypoint generation compensation is implemented virtually 	Test 6	M.F.2
Progress Review 4 4/6/2022	- Control method is capable of being used with	Test 14	M.F.3
	robot manipulator physically - Robot manipulator end-effector and setup is	Test 16	M.F.5
	fully assembly		191.19.1
	 Probe is able to create a point cloud which is sufficient for use in generating waypoints according to surgical plan 	Test 8	M.F.1
Progress Review 5	- Control method and motion planning fully	Test 9	M.F.2
4/20/2022	integrated	Test 10	M.F.3
	- Detect all movement of the pelvis	Test 15	M.F.4
	 Manipulator able to be maneuvered in free motion mode 		M.F.6

4 Tests

4.1 Test 1

	Camera Setup Test
	Objective
Test camera h	ealth and camera discovery via a ROS Node.
Equipment	MRSD Desktop 2, Atracys SpryTrack 300 Camera
Elements	Perception Subsystem
Personnel	Gunjan Sethi
Location	NSH Basement
	Procedure
camera.	mera_node ROS Node and wait for the node to discover the ROS Node to load the geometry file. Validation

4.2 Test 2

	Marker Pose Detection Test
	Objective
Test fiducial m	arker detection via a ROS Node.
_	
Equipment	MRSD Desktop 2, Atracys SpryTrack 300 Camera, Markers
Elements	Perception Subsystem
Personnel	Gunjan Sethi
Location	NSH Basement
Location	NSH Basement Procedure
1. Run the can 2. Wait for the	Procedure nera_node ROS Node and wait for the node to discover the camera ROS Node to load the geometry file. ers in front of the camera.
1. Run the can 2. Wait for the	Procedure nera_node ROS Node and wait for the node to discover the camera ROS Node to load the geometry file.
1. Run the can 2. Wait for the 3. Place market - Camera's set - Geometry file	Procedure nera_node ROS Node and wait for the node to discover the camera ROS Node to load the geometry file. ers in front of the camera. Validation rial number is printed.

4.3 Test 3

	Test 3:
	Marker Pose Visualization Test
	Objective
Test the publis using RViz.	shing of marker poses onto a ROS topic and visualizing markers
Equipment	MRSD Desktop 2, Atracys SpryTrack 300 Camera, Markers
Elements	Perception Subsystem
Personnel	Gunjan Sethi
Location	NSH Basement
	Procedure
3. Place mark	ROS Node to load the geometry file. ers in front of the camera. c command-line tool to view messages on the marker-pose
	Validation
- Geometry file	mand line shows marker poses.

4.4 Test 4

	Preliminary Point Cloud Registration Test
	Objective
	election of the registration algorithm for the use-case and test the gistration algorithm to register the simulated fiducial points onto the
pelvis point clo	
Equipment	MRSD Desktop 2, Atracys SpryTrack 300 Camera, Markers
Elements	Perception Subsystem
Personnel	Kaushik Balasundar
Location	NSH Basement
	Procedure
downsampled 2. Run the sel	Procedure bintsets, one of the complete pelvis model and the other of the point cloud from the surface of the acetabulum. acted registration algorithm and visually validate the transformation d A to pointcloud B. Validation
downsampled 2. Run the sel	pointsets, one of the complete pelvis model and the other of the point cloud from the surface of the acetabulum. acted registration algorithm and visually validate the transformation d A to pointcloud B.

4.5 Test 5

	Test 5 :
	Landmark Capture Test
	Objective
	f the registration probe to record fiducial landmarks on pelvis pility to use Open3D to store the selected points as a pointcloud
Equipment	Atracys Sprytrack 300 Camera, Markers, Registration Probe MRSD Computer 2, Model Pelvis
Elements	Perception Subsystem
Personnel	Gunjan Sethi & Kaushik Balasundar
Location	NSH Basement
	Procedure
field of view of	istration probe to slide through the acetabuluar surface in the the camera. run ROS script to visualize the captured points as Open3D
	Validation

- The resulting visualization must be in the form of an Open3D visualization window. It must display the captured points that depicts the surface of the acetabular surface.

4.6 Test 6

	Secondary Pointcloud Registration Test
	Objective
	of the registration algorithm to register the physically probed e pelvis pointcloud and validate qualitatively.
Equipment	Atracys Sprytrack 300 Camera, Markers, Registration Probe MRSD Computer 2, Model Pelvis
Elements	Perception Subsystem
Personnel	Gunjan Sethi & Kaushik Balasundar
Location	NSH Basement
	Procedure
of view of the	run ROS script to register the pointcloud with stored pelvis pointcloud
	Validation
	needs to be roughly overlapping with pointcloud A's acetabulum

4.7 Test 7

	Quantitative Registration Test
	Objective
and the second	of the registration algorithm to register the physically probed e pelvis pointcloud with inlier RMSE < 0.05
Equipment	Atracys Sprytrack 300 Camera, Markers, Registration Probe MRSD Computer 2, Model Pelvis
Elements	Perception Subsystem
Personnel	Gunjan Sethi & Kaushik Balasundar
Location	NSH Basement
	Procedure
ield of view of 2. Once done,	istration probe to slide through the acetabuluar surface in the the camera. run ROS script to register the pointcloud with stored pelvis validate qualitatively.
	Validation

- Pointcloud B needs to be registered with pointcloud A's acetabulum region with inlier RMSE < 0.05

4.8 Test 8

Equipment Pelvis Elements Perception Subsystem Personnel Gunjan Sethi & Kaushik Bala	
Equipment Pelvis Elements Perception Subsystem Personnel Gunjan Sethi & Kaushik Bala	ra, Markers, MRSD System 2, Mode
Personnel Gunjan Sethi & Kaushik Bala	
NOUD	asundar
Location NSH Basement	
Procedu	re
 Use the registration probe to slide through of view of the camera to register the pelvis ac Specify the pose of the acetabular implant pelvis marker's centroid. Run ROS script to transform to world frame 	etabulum with the 3D model. (x,y,z,roll,pitch,yaw) to be at the
Validatio	n

4.9 Test 9

	Test 9 :
	Pelvis Motion Detection Test
	Objective
	hat perception subsystem is capable of processing data to e pelvis has moved past a specified error threshold
Equipment	Atracys Sprytrack 300 Camera, Markers, MRSD System 2, Sawbone Pelvis
Elements	Perception Subsystem
Personnel	Gunjan Sethi & Kaushik Balasundar
Location	NSH Basement
	Procedure

 Place the pelvis in the field of vision of the camera.
 Specify the surgical plan as a 6D pose and convert to world coordinates. 3. Manually move/tilt pelvis beyond the specified error threshold while ensuring that the pelvis marker remains the camera field of vision.

Validation

- The ROS script must detect and notify user on change in pelvis position when threshold is exceeded with a latency of <500ms.

4.10 Test 10

	Test 10:
	Motion Planning and Controls Integration Test
	Objective
	e planning and control subsystems such that the end effector follows generated without exceeding the force threshold
Equipment	MRSD System 2, Arm, Markers, Reaming tool
Elements	Planning & Controls
Personnel	Sundaram Seivur
Location	NSH Basement
	Procedure
 Call node to point. Call control Measure an 	ffector close to the site of operation. o generate trajectory using Movelt between current point and end node to make the arm move along generated waypoints. Id analyze if manipulator follows trajectory and reaches goal state error limits and not exceeding force limits.
	Validation
	ly and in simulation if arm starts following generated trajectory. orque sensor readings to validate that the applied forces are within th

4.11 Test 11

	Test 11:		
	Waypoint/Trajectory Generation Test		
	Objective		
To test Movelt space) to the e	to generate a trajectory from a start point(any point robot is left in and point		
Equipment	MRSD System 2, Arm, Markers, Reaming tool		
Elements	Motion Planning		
Personnel	Sundaram Seivur		
Location	NSH Basement		
	Procedure		
2. Mark curren	ulator close to the pelvis model using free motion mode t pose as start point for manipulator. cript to invoke Movelt to generate trajectory between start and end poi		
	Validation		
	ulation if arm is moving along generated trajectory. ly if arm is moving along similar axis in reality.		

4.12 Test 12

	Test 12:		
	Waypoint Generation Compensation Test		
	Objective		
position error a	ew trajectories when pelvis movement crosses a threshold of 1mm and 1.5 degress orientation error. The trajectory generated should be less than or equal to 150ms		
Equipment	MRSD System 2, Arm, Markers, Reaming tool		
Elements	Motion Planning		
Personnel	Sundaram Seivur		
Location	NSH Basement		
	Procedure		
orientation of r	iously from perception node to detect a change in position and nore than 1mm and 1.5 degrees respectively. ry planning node to generate new trajectory.		
	Validation		
	ove pelvis to new position to check if new trajectory is generated. av in generating new trajectory.		

4.13 Test 13

Test 13 :			
Position and Force Control in Simulation Test			
	Objective		
	lity of the MPC controller to move to desired positions without pecified force in simulation before implementing in reality		
Equipment	System with Hipster Test Environment (MRSD Desktop 2)		
Elements	Controls & Actuation Subsystem		
Personnel	Anthony Kyu		
Location	NSH Basement		
	Procedure		
block). 2. Set and sen the obstacle.	ation environment with manipulator and an obstacle (a simple ad a desired end effector pose to the manipulator that is within d analyze the pose and force of the end effector over the simulation.		
	Validation		
the test fails. T - If the differen position is min	uring the simulation ever exceeds the force threshold (< 30N), This is evaluated quantitatively. Ince from the final axial (z) position to the desired axial (z) imized while still maintaining its x and y positional constraints test passes. This is evaluated quantatively for x and y error and r z axis.		

4.14 Test 14

5	Test 14 :			
Position and Force Control in Reality Test				
Objective				
	f the MPC controller performs as expected in reality, matching specs nts when testing in simulation			
Equipment	Wrist Force/Torque Sensor, Robotic Manipulator, Obstacle, Atracsys Camera, Marker Mounts, System with Hipster Test Environment (MRSD Desktop 2)			
Elements	Controls & Actuation Subsystem			
Personnel	Anthony Kyu			
Location	NSH Basement			
	Procedure			
the workspace 2. Set and sen obstacle.	d a desired end effector pose to the manipulator that is within the d analyze the pose and force of the end effector over the duration of			
	Validation			
This is evaluat - If the differen minimized whi	uring the test ever exceeds the force threshold (< 30N), the test fails. ed quantitatively. ce from the final axial (z) position to the desired axial (z) position is le still maintaining its x and y positional constraints (+/- 2mm), the test s evaluated quantatively for x and y error and qualitatively for z axis.			

4.15 Test 15

Test 15 :					
	Free Motion Mode Test				
	Objective				
end effector fro	ity of the manipulator to allow the an external agent to move the eely, moving the arm without gravitational resistance, and ntroller trying to hold a single position				
Equipment	Robotic Manipulator, Force/Torque Sensor, System with Hipster Test Environment (MRSD Desktop 2)				
Elements	Controls & Actuation Subsystem, State Machine Design				
Personnel	Anthony Kyu				
Location	NSH Basement				
	Procedure				
 Have perso workspace. Qualitatively (except for post 	with Free Motion Mode. nnel push the end-effector in random directions within the assess whether the end-effector moves without resistance sible arm momentum), and without the need for the personnel vitational assistance.				
	Validation				

 The robot end-effector moved with ease or without resistance (qualitatively).
 The robot arm didn't need gravitational assistance from the personnel (qualitatively). - The joints of the arm moved in a predictable manner (qualitatively).

4.16 Test 16

	Test 16 :
_	Hardware Setup Test
	Objective
rigidly secured	alized hardware setup in order to determine that all hardware is d and functioning properly during motions that the manipulator would ypical reaming operations
System with Hipster Test Environment (MRSD Desktop 2), Rot Manipulator (with attached reamer end-effector), Marker Arrays IR Markers, Atrascys camera, Sawbone pelvis, Panavise mour	
Elements	Full Hardware System
Personnel	Parker Hill
Location	NSH Basement
	Procedure
in place 3. Attach marl 4. Place the A and pelvis ma 5. Actuate the path to what v 6. After placin	avise mount to the manipulator table and clamp the sawbone pelvis ker array to the reamer assembly as well as to the pelvis tracsys camera in an orientation to be able to view both the reamer
	Validation
moves around - Camera is ca	is secured properly and does not have any play as the manipulator apable of seeing both marker arrays throughout the procedure bowered and capable of removing material from the sawbone pelvis

4.17 Test 17

	Test 17 :	
	Reamer Motor Speed and Torque Test	
	Objective	
	que and speed of the motor and gearbox and verify it's ability to output torque for the reamer to properly function to ream the acetabulum	
Equipment	System with Hipster Test Environment (MRSD Desktop 2), motor and gearbox from reamer assembly, power supply, video camera, long piece of wood, weights	
Elements	Reaming subsystem of the hardware system	
Personnel	Parker Hill	
Location	NSH Basement	
	Procedure	
 Using a vide Turn off the measured leng Add weight and the power s orientation whitistic Repeat step past the specifi motor 	e motor to the power supply and increase the applied voltage to 24V so camera, measure the approximate no load speed power supply and attach a long piece of wood of a specified that to the motor shaft to the end of the piece of wood and measure the applied torque, turn supply and determine if the motor is capable of moving past an ere the wood is parallel to the floor of 4, increasing weight each time until the motor is incapable of moving fied orientation, mark the resulting torque as the peak torque of the to load speed and peak torque, approximate the max torque at a pm	
	Validation	
	of approximately 400 rpm, the associated maximum torque of the be greater than 1 Nm	

4.18 Spring Validation Experiment

Objective: The general goal for this semester is that by the spring validation, all our subsystems should be working together in simulation. This includes the perception and sensing subsystem, the motion planning subsystem, and the controls subsystem. The spring validation experiment should see these subsystems which were tooled to work in simulation, be ported over to working with the physical system. Thus, with these experiments, we hope to validate the functionality of all of our individual subsystems on the physical robot manipulator.

Equipment: All equipment mentioned in Logistics will be utilized during the testing.

Elements: Perception and sensing subsystem, motion planning subsystem, controls subsystem

Personnel: Entire Hipster Team

Location: NSH Basement

Procedure and Validation for Each Test:

- 1. Sensing and Perception Test
 - Procedure:
 - (a) Place a marker on the robot's end-effector.
 - (b) Record the robot's end-effector pose through encoder values and transformation matrices. Record time to get end-effector pose.
 - (c) Record the end-effector marker's pose from the camera.
 - (d) Place a marker on a plane and record its initial position.
 - (e) Move the marker to 3 new positions and record the time needed to get new marker positions.
 - (f) Record computed error for the 3 new marker positions.
 - Validation:
 - (a) The 2 recorded poses must match with an error \leq 3mm and orientation error \leq 3 degrees.
 - (b) The robot must record new marker positions with a latency \leq 500ms.
 - (c) The robot must compute errors for each new marker position.

2. Motion Planning and Controls Test

- Procedure:
 - (a) Command the robot to go to an end-point.
 - (b) Record the time taken for the robot to generate trajectory.
 - (c) Run the Quantitative Trajectory Evaluator and examine the results folder to determine if the results are acceptable according to our performance requirements.

(d) Measure the force output over the trajectory and ensure that it does not go above the maximum force threshold.

• Validation:

- (a) The robot end-effector must generate a new trajectory within 500ms.
- (b) The robot end-effector reaches the end point within a threshold without moving through singularities.
- (c) The maximum error at any point during the trajectory must be within a certain error threshold.
- (d) The maximum force at any point during the trajectory must be less than the maximum force threshold (30N).

5 Appendix

5.1 Functional and Performance Requirements

Functional Requirement	Performance Requirement	Justification
M.F.1 The system shall localize the robot arm in real-time with respect to the pelvis before and during surgery	M.P.1.1 The system will localize the robot arm in real-time with respect to the pelvis before and during surgery with a latency less than or equal to 50 ms	Latency of Atracsys Sprytrack 300 is less than 25ms; Processing time about 25 ms
	M.P.1.2.1 The system will localize the robot arm in real-time with re- spect to the pelvis before and during surgery with a position error of less than 1 mm	Survey sent to surgeons and literature review suggest a desired position error of less than 2 mm. Combining M.P.1.2.1 and M.P.3.1 will result in a combined position error of less than 2 mm.
	M.P.1.2.2 The system will localize the robot arm in real-time with re- spect to the pelvis before and during surgery with an orientation error of less than 1.5-degrees	Survey sent to surgeons and literature review suggest a desired orientation error of less than 3-degrees. Combining M.P.1.2.2 and M.P.3.2 will result in a combined orientation error of less than 3-degrees.
M.F.2 The system shall plan the trajectory of the robot arm based on the given surgical plan	M.P.2 The system will plan the trajectory of the robot arm based on the given surgical plan with a latency less than or equal to 150 ms	Total latency of the system should be less than 500 ms.
M.F.3 The system shall execute surgical plan by reaming along the generated trajectory	M.P.3.1 The system will execute sur- gical plan by reaming along the gen- erated trajectory with an position er- ror of less than 1 mm	Survey sent to surgeons and literature review suggest a desired position error of less than 2 mm. Combining M.P.1.2.1 and M.P.3.1 will result in a combined position error of less than 2 mm.
	M.P.3.2 The system will execute sur- gical plan by reaming along the gen- erated trajectory with an orientation error of less than 1.5-degrees	Survey sent to surgeons and literature review suggest a desired orientation error of less than 3-degrees. Combining M.P.1.2.2 and M.P.3.2 will result in a combined orientation error of less than 3-degrees.
M.F.4 The system shall compute error and interpret the movement of the pelvis during reaming	M.P.4.1 The system will compute error and interpret the movement of the pelvis during reaming with a latency less than or equal to 50 ms	Latency similar to localization
	M.P.4.2 The system will generate a new trajectory if the interpreted position and orientation errors are greater than 1 mm or greater than 1.5- degrees.	Survey sent to surgeons and literature review suggest a desired position and orientation error of less than 2 mm and 3-degrees. Therefore, the thresholds for compensating for these errors should be less than these desired errors.
M.F.5 The system shall adapt and compensate for movement by generating a new trajectory	M.P.5 The system will adapt and compensate for movement by generating a new trajectory with a latency less than or equal to 150 ms	Latency similar to trajectory planning
M.F.6 The system shall allow the surgeon to place the robot arm at an initial position	M.P.6 The system will allow the sur- geon to place the robot arm to an initial position by back-driving the robotic arm	Reduce system complexity by keeping path to be planned short
M.F.7 The system shall provide the surgeon with visual feedback	M.P.7 The system will provide the surgeon with visual feedback with a latency less than or equal to 150 ms	From literature on tele-surgery, latency 150 ms is found to be noticeable to surgeons, and degrades performance of surgeon-performed tasks
M.F.8 The system shall allow the surgeon to e-stop	M.P.8 The system will allow the surgeon to e-stop the system, stopping the system within 500 ms	Competitor systems have similar quantification

5.2 Non-functional Requirements

M.N.1 The system will produce forces low enough for it to be safe around humans.

M.N.2 The system will provide a minimal and easy-to-interpret user interface design for surgeons.

M.N.3 The system will autonomously detect malfunctions and errors and notify user accordingly.

D.N.1 The system will allow for numerous successful surgeries, without the need for servicing and calibration.

D.N.2 The system will have a cost comparable to similar systems on the market.

D.N.3 The system will adhere to all relevant ISO standards pertaining to medical robotic systems.

D.N.4 The system will be of a size and dimension that is ergonomic.

D.N.5 The system will be designed such that it can be serviced easily.

D.N.6 The system will be designed to be easily sterilizable or sterile in the sterile field.