Individual Lab Report - 1

Autonomous Reaming for Total Hip Replacement

e § :“\

IPSTER |ARTHuR

Sundaram Seivur

Team C:

Kaushik Balasundar | Parker Hill | Anthony Kyu
Sundaram Seivur | Gunjan Sethi

February 10th 2022

Carnegie Mellon University

¥ The Robotics Institute

Contents

1 Individual Progress

1.1 Sensorand MotorsLab
1.1.1 Ambient Light Sensor
1.1.2 DC Motor : Velocity Control
1.2 MRSDProject. e

2 Challenges

2.1 Sensorsand MotorsLLab
2.2 MRSD Project Challenges
3 Team Work
3.1 Anthony Kyu e
3.1.1 Sensorsand MotorsLab,
3.1.2 MRSDProject
3.2 Kaushik Balasundaro
3.2.1 Sensorsand MotorsLab,
322 MRSDProject
33 GunjanSethi
3.3.1 Sensorsand MotorsLab
332 MRSDProject
34 ParkerHill e
34.1 Sensorsand MotorsLab
342 MRSDProject

4 Future Plan

5 Quiz
5.1 ADXL335 . . . e
5.2 Signal Conditioning
53 0pampso e
53.1 Casel: e
532 Case2: ... e e
54 Control e e

6 Code

Sensors and Motors Lab — Andrew ID: sseivur

1 Individual Progress

1.1 Sensor and Motors Lab

My responsibilities in the Sensors and Motors Lab was to implement velocity control of the DC
motor using PID control. This meant that I took readings from the encoder to count the number of
ticks for each revolution of the main shaft and converted that to RPM. Given an input signal from
a sensor or the GUI, the motor converges to the given input RPM by reducing error. I was also
responsible for interfacing the readings from the Ambient Light Sensor, display those readings as
Lux output and to run all the motors based on the output reading. In the case of controlling the
velocity of the DC motor with the Ambient Light Sensor, it meant that with increasing value of
light (lux), the speed of rotation of the motor increased and vice versa.

Additionally, I was also entrusted with integrating all the hardware together which included con-
necting all the motors and sensors together in a tidy fashion.

Figure 1: Integrated circuited with motors and sensors

1.1.1 Ambient Light Sensor

The Ambient Light Sensor by modern devices is an analog sensor that outputs a value between
0 and 1023 with a Sharp GATA1S201WP surface-mount ambient light sensor. The range of the
sensor is between 3 to 55000 lux and I found the maximum value (in the lighting conditions in
B506) to be close to 930. The sensor is prone to external noise and the output fluctuates rapidly
without any filter. Hence, I decided to implement a moving average filter and use a 1nF capacitor to
account for voltage fluctuations. A moving average filter could lead to lag in the output signal, but
I was able to balance the lag and reduce lag effectively by tuning the window size. The capacitor
helped in reducing noise partially, but the performance was significantly improved after applying
the moving average filter. Once I got stable output, I needed to convert the analog output to

Page 1

Sensors and Motors Lab — Andrew ID: sseivur

I (1)
I3
]
Y,

Ay

1 10 100 1000 10000 100000
Ey ()

Figure 2: Current vs Illuminance of ambient light sensor

physical units, which in this case would be Lux. In this regard, I referred to the datasheet of the
sensor to find a plot that relates current (mA) to illuminance (lux) as seen in Fig. ?? The plot shows
a logarithmic relationship between current and illuminance throughout the operating range of the
sensor. To convert an analog output to Lux, I mapped the output to voltage output by mapping
0V-5V to 0-1023. This voltage was then converted to a current signal by diving the voltage value
by a 10k resistor. This current output was then mapped to Lux using the graph in the datasheet.
To validate the datasheet plot, I also took samples of the Lux output of the sensor and compared
it with the lux meter output of more sophisticated sensors in our smartphones. The output was in
close approximation with the output from the smartphone with an error of £+ 10 lux.

1.1.2 DC Motor : Velocity Control

Velocity control for the DC motor was implemented using PID control. I wrote a function to
count the number of ticks captured by both the hall effect sensors present in the encoder. This
counting was done by attaching the Channel A and Channel B of the encoder to interrupt pins in
Arduino. I converted the number of ticks counted per second to number of motor shaft revolutions
per second by dividing the encoder value by 90 (30:1 gear ratio with 3 pulses per second).

To tune the RPM of the motor shaft, I wrote a function to calculate the control signal by computing
the error between current velocity and desired velocity. This control signal was then sent as an
PWM signal to the motor for velocity compensation.

1.2 MRSD Project

My primary contribution to the ARTHUR project (Autonomous Reaming for Total Hip Re-
placement) has been with writing and integrating controller files for the robot arm to be controlled
in simulation. I have simultaneously also worked on developing a node to publish joint trajectory
commands for the robot joints to track and reach a goal state. I am currently working on publishing
a trajectory to the arm in Gazebo from Moveit which takes a start and end point as input. In the
start of the semester I also spent little time on writing some parts of the URDF file as this file given
to us by our sponsors was incomplete.

Page 2

Sensors and Motors Lab — Andrew ID: sseivur

CHANNEL A

Figure 3: DC motor and Ambient Light Sensor

2 Challenges

2.1 Sensors and Motors Lab

The main challenges we faced was while integrating the hardware with the software and to get

all the motors and sensors working at once. We implemented two push buttons, one for changing
motors and the other for changing sensors. This lead to us implementing a state machine with
multiple switch cases. The switch cases had a lot of edge cases which we did not foresee and had
to debug progressively. For example, when we switched from stepper motor to servo motor, the
DC motor started rotating as it might have gotten a stray signal.
Secondly, we faced issues with getting velocity control of the DC motor working with all the
hardware integrated. All the motors were attached to all the available PWM pins on arduino which
lead to a large amouunt of current being drawn at all times. As the stepper motor also drew high
currents, this led to voltage fluctuations in the DC motor. These voltage fluctuations caused the
DC motor to have speed fluctuations with jittery motion. We accounted for this by better tuning
the PID parameters, reducing code latency and diving power to the circuit from dual sources.

2.2 MRSD Project Challenges

The most important issues we faced in the capstone project was with receiving hardware from
our sponsors. Placing an order for the arm and its eventual dispatch was delayed. We received the
arm two weeks post our initial estimate. We had taken this risk into account and had planned a
mitigation strategy by spending the first few weeks working on simulation.

An unforeseen challenge we are currently facing is inadequate support from Kinova to integrate
any external code with the arm. Since the arm is a custom model which hasn’t been released
commercially yet, most APIs are still under development. The arm can’t be interfaced with ROS,
Python or CPP. We have discussed this problem with our sponsors and they have requested for a

Page 3

Sensors and Motors Lab — Andrew ID: sseivur

Kinova Gen-3 arm for us to use till the other arm becomes usable.

3 Team Work
3.1 Anthony Kyu
3.1.1 Sensors and Motors Lab

Anthony set up the state machine for the arduino code, worked on the Force Sensitive Resistor
and Servo motor. He also setup the code to be integrated with the GUI.

3.1.2 MRSD Project

He designed the camera mount, contributed in fabricating the mount and has been spending
time in researching control algorithms for the project.

3.2 Kaushik Balasundar
3.2.1 Sensors and Motors Lab

Kaushik worked with the potentiometer and postion control of the DC motor. He also helped
with the system integration

3.2.2 MRSD Project

He initially spent most of his time in setting up a docker environment and code repository for
the project. He then worked on cleaning the URDF file and setup the simulation environment. He
is currently working on integrating Open3D with ROS for registration.

3.3 Gunjan Sethi
3.3.1 Sensors and Motors Lab

Gunjan developed the GUI for the lab and also helped in integrating the sensors and motors
with the GUI. She spent some time debugging the program as well.

3.3.2 MRSD Project

As part of the perception team, she has been setting up the Atracys camera, linked the camera
with ROS and wrote a ROS node to discover the camera and markers. She is also managing Jira
for our project.

3.4 Parker Hill
3.4.1 Sensors and Motors Lab

Parker worked on the stepper motor and ultrasonic range finder sensor as part of the lab. He
also contributed in the hardware and system integration.

Page 4

Sensors and Motors Lab — Andrew ID: sseivur

3.4.2 MRSD Project

He contributed in fabricating the camera mount, designing connectors for the markers and is
learning ROS.

4 Future Plan

The sensors and motors lab taught me the importance and difficulties of system integration.
When multiple subsystems are involved in a project, the performance of some or all of the indi-
vidual systems can get compromised if not integrated well. The bugs in our code also made me
realize the importance of unit testing each function thoroughly for all edge cases before integrating
them as a whole. Although the actuators and sensors do not have direct relevance to my capstone
project, I have systems integration lessons to be carried forward to my capstone project.

Our immediate plan as a team is to find leads to get a manipulator temporarily that can suit our
needs in terms of force and position accuracy attainable by the arm. In the meantime, we would
continue to work on our individual tasks as planned in the schedule. We will also look at modifying
the schedule to take into account the delays caused by hardware and software incompatibility of
the arm provided to us by our sponsors. As the Motion planning lead, I will develop scripts for
interfacing Movelt with the arm, such that the trajectories generated by Movelt are published to
our system with low latency.

I am personally taking responsibility to keep the team on track with the schedule. I will continue
to contribute in helping the multiple subsystems to integrate with each other seamlessly.

5 Quiz

5.1 ADXL335
* The sensor has a typical range of +3.6g.

* The dynamic range of the sensor is 3.6g - (-3.6g) = 7.2g.

* Cyc 15 a 0.1u F capacitor that is attached close to the input supply pin to decouple the ac-
celometer from noise on the power supply.
When several devices share a power supply via a common path, an increase or decrease in
the current drawn by one of the devices can lead to voltage changes and transient currents
large enough to affect the operation of other devices. A decoupling capacitor, like Cy. in
ADXL335 provides a path for transients currents to pass through instead of the common
impedance of the circuit. The capacitor acts as a local energy storage device.

* Vour =1.5V+(0.3V/g) xa

* The largest expected nonlinearity = 0.3% of full scale
Typical full scale = & 3.6g
Therefore, the largest expected nonlinearity = 0.003 x 7.2 = 4+ 0.0216¢g

¢ The bandwidth of the X and Y axes are 0.5Hz to 1600Hz.

Page 5

Sensors and Motors Lab — Andrew ID: sseivur

* The noise density of the ADXL335 is given as 150ug
RMS Noise = Noise density * v BW x 1.6
RMS Noise = 150 x v/25% 1.6 =948.68ug

* The ADXL335 measures acceleration (g) and is expected to have an Og when kept on a
perfectly flat surface, with an supply voltage of 3V. We can take repeated measurements
along the flat surface to measure acceleration. We then calculate the mean of the recorded
measurements, subtract the mean from the recorded acceleration values and then square all
the resulting values. Finally, we find a mean of all the squared values by adding them and
dividing by the total number of measurements to get the RMS error value

5.2 Signal Conditioning

* The moving average filter requires maintaining a history of data based on the window size.
This leads to a lag in the measured data

* The filter can overlook certain important characteristics of the curve my averaging it out. If
a smaller window is chosen for this reason, then it would allow noise to pass in

Name at least two problems you might have in using a median filter.
* The computational cost of a median filter is very high

* They are prone to get affected by small signal-to-noise ratios

5.3 Opamps

In the following questions, you want to calibrate a linear sensor using the circuit in Fig. 1 so
that its output range is 0 to 5V. Identify in each case: 1) which of V1 and V2 will be the input
voltage and which the reference voltage; 2) the values of the ratio Rf/Ri and the reference voltage.
If the calibration can’t be done with this circuit, explain why. Your uncalibrated sensor has a
range of -1.5 to 1.0V (-1.5V should give a OV output and 1.0V should give a 5V output). Your
uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a OV output and 2.5V should
give a 5V output).

5.3.1 Case 1:

V1 is the reference voltage and V; is the input voltage since the amplifier is non-inverting

Vi—V, . Vo —V,ut
R Ry

Ry
— Vout:(VZ_VI)F‘f‘VZ (1)
l

The above equation has two unknowns R—f and V. r. Substituting (Vowr =0V, V, = —1.5V) and

R;
(Vouwr =5V, Vo = 1V) we get,

R .
—1.5= (Vs +1.5)-L)
R;
R
4=(1=Veep) 3)
1

Page 6

Sensors and Motors Lab — Andrew ID: sseivur

Solving these equations we get,

L1, Vi = Vypp = =3V 1
R W f 4

Therefore, the calibration of this sensor is achievable by this OpAmp.

5.3.2 Case 2:

Ry
Vout — (VZ_VL)F‘FVZ (5)
l
Substituting (V,,r = 0V, Vo = —2.5V) and (V,,,; = 5V, Vo, =2.5V) we get,

Ry

R 0 ©6)

This is not viable as Ry cannot be zero to maintain the functionality of the OpAmp. Hence, cali-
bration of this sensor is not achievable by this OpAmp.

5.4 Control

* The equation to control a Dc motor with PID is:

u=K,x*error+ K, *xerror+ /K,- x error dt @)

where Kp stands for proportional term, Kd stands for the derivative term and Ki stands for
the intergral. The enconder is used to control the position of the main shaft of the DC motor.
The encoder counts the number of the number of ticks or in other words the encoder outputs
a sequence of pulses, which gets mapped to the DC motor position. Given a desired position,
the difference or the error between the desired and current position is fed to the PID equation
and a control signal is computed as the output.

In our system, we computed the error my counting the number of ticks the encoder has
intercepted from the zero position. Since the encoder has a resolution of 90 ticks per main
shaft revolution, that means each ticks corresponds to a rotation of 4 degrees. Given the error
between the current position and desired position in degrees, the difference is fed to the PID
function. The control signal is mapped to values between 0 and 255 and passed to the DC
motor. This allows the motor to move to a user commanded position.

o If the system is sluggish, I would use the P term as this term accounts for the overshoot of
the current signal from the desired signal. If the system is deemed sluggish, that means that
the current signal doesn’t reach the desired output. The P term will allow the signal to rise
till the desired output and possibly even overshoot. The P term behaves as the spring in a
mass spring damper system.

» After applying the P term, if the system still has steady-state error then I will use the integral,
also called the I term in PID. The I term acts as a memory for the system by integrating the

Page 7

Sensors and Motors Lab — Andrew ID: sseivur

error of the system over time and forcing the system to close down the steady-state error.

» After applying the P and I terms, if the system still has overshoots then I would be applying
the D term that acts as a damper for the system. The D term predicts the value of the control
signal by computing the slope of the error

6 Code

/** Libraries */

/** Macros */
#define LIGHTSENSORPIN A2 //Ambient light sensor reading
#define light_window 50

/** Pin Assignments */

//Motor encoderPins
const int ENCA = 2;
const int ENCB = 3;
//Motor signal pins
const int PWM = 9;

const int IN1 11;
const int IN2 12;

/*x Global Variables */

// Ambient Light Sensor Variables
int a = 0;

int a_analog = 0;

float sum = 0;

float sum_analog = O;

float readings[light_window];
float readings_analog[light_window];
float avg = 0O;

float avg_analog = O;

float lux;

int lux_analog;

long lightTimer = O;
int m = 0;
float sum_motor = O;

Page 8

Sensors and Motors Lab — Andrew ID: sseivur

float readings motor[light window] ;
float avg _motor = O;

// DC Motor Velocity Control Variables

int posPrev = 0;

float previousError = O;

char incomingByte;

volatile int encoderValue = O;

float edot = O;

float proportional = 0.5; //2; //k_p = 0.5
float integral = 0.55; //3 //k_i = 3

float derivative = 0.0001;//0.12; //k d =1
float controlSignal = 0; //u - Also called as process variable (PV)
float errorIntegral = O;

float deltaT;

//int pos;

long previousTime;

long currentTime;

[/ Setupskskrkskoksorkskskkokkokskokokskok ok koo dok ok kok ok ok
void setup()
{
// Attach pins
pinMode (FSR_Pin, INPUT);
pinMode (sensorPushButton, INPUT_PULLUP);
pinMode (motorPushButton, INPUT_PULLUP);
attachPCINT(digitalPinToPCINT (sensorPushButton), changeSensor, FALLING);
attachPCINT(digitalPinToPCINT (motorPushButton), changeMotor, FALLING);
pinMode (USRF_Pin, INPUT);
pinMode (LIGHTSENSORPIN, INPUT);

// Motor setup

motorInput = O;

setupServo (myservo, servoPin);

stepperTimer = micros();
stepper.begin(Stepper RPM, Stepper_Microsteps);
pinMode (ENCA, INPUT);

pinMode (ENCB, INPUT);

pinMode (PWM, OUTPUT);

pinMode (IN1, OUTPUT);

pinMode (IN2, QOUTPUT);
attachInterrupt(digitalPinToInterrupt (ENCA), encoder, RISING);
currentTime = micros();

Page 9

Sensors and Motors Lab — Andrew ID: sseivur

previousTime = micros();

by

[/ LoOp*kskkakkakkokkokkokkokkokkok ok ok ok ok ok ok ok ok ok Kok Kok Kok Kok Kok %

void loop()
{

if (Serial.available()) {
//Read ambient light sensor - Lux output for GUI
if ((micros() - lightTimer) > 100000) {

lux = ambientLightRead();

lux_analog = ambientLightAnalog();

lightTimer = micros();

by

// Drive chosen motor
switch (motorState)

{
case SERVO:

case STEPPER:
case DC_MOTOR_POS:

case DC_MOTOR_VEL:
if (sensorState != GUI)

{
motorInput = map(motorInput, O, 1023, 0, 100);
// Serial.println(motorInput);

+

int pos_vel = encoderValue;

long currentTime = micros();
deltaT = ((float) (currentTime - previousTime) / 1000000) ;

if (deltaT > 0.01)

{
float velocity = (pos_vel - posPrev) / deltaT;
posPrev = pos_vel;
previousTime = currentTime;

float vl = velocity * 60 / 90;
float error = motorInput - vi;

Page 10

Sensors and Motors Lab — Andrew ID: sseivur

float u = calculatePIDVel(error);
int dir = 1;
if (u < 0)
{
dir = -1;
}

int pwr = (int) fabs(uw);
if (pwr > 255)

{
pwr = 25b5;
}
else if (pwr < 0)
{
pwr = 0;
}

setMotor(dir, pwr, PwM, IN1, IN2);

sum_motor = sum_motor - readings_motor[m];
readings_motor[m] = vi;
sum_motor = sum_motor + vi;
m= (m+ 1) % light_window;
avg _motor = sum_motor / light window;
}

break;

// Sensor FUnCtioms®kskkskskskskskkkskskskkkkokokskkk*kokokkk

//Ambient Light sensor function
float ambientLightRead() {
sum = sum - readingsl[a];
float reading = analogRead (LIGHTSENSORPIN) ;
readings[a] = reading;
sum = sum + reading;,
a=(a+ 1) % light_window;
avg = sum / light_window;

float volt = (avg * 5.0) / 1023.0;
// Serial.print(" Volt:"); Serial.print(volt);

Page 11

Sensors and Motors Lab — Andrew ID: sseivur

float curr = pow(10, 6) * (volt / 100000);
// Serial.print(" Curr:"); Serial.print(curr);

float lux = pow(10, 0.1 * curr);
// Serial.print(" Lux: "); Serial.println(lux);
return lux;

//Ambient sensor analog output
float ambientLightAnalog() {
sum_analog = sum_analog - readings analogla_analog];
float reading_analog = analogRead (LIGHTSENSORPIN) ;
readings_analogl[a_analog] = reading_analog;
sum_analog = sum_analog + reading_analog;
a_analog = (a_analog + 1) % light_window;
avg_analog = sum_analog / light window;
// Serial.print("Avg. Reading: "); Serial.print(avg_analog);
return avg_analog;

// Motor Functionssksksksksksksksksksksksksk sk sk sk sk 5k 5k %k 5k 5k 5k 5k 5k 5k 5k 5k >k k

//DC Motor Velocity Control
//Velcoity Control main PID Loop
void velocityControl() {
int pos = encoderValue;
float velocity = (pos - posPrev) / deltaT;
posPrev = pos;
previousTime = currentTime;

float vl = velocity * 60 / 90;

float error = motorInput - vi;
float u calculatePIDVel (error);

int dir = 1;
if (u < 0) {
dir = -1;

Page 12

Sensors and Motors Lab — Andrew ID: sseivur

int pwr = (int) fabs(uw);
if (pwr > 255) {

pwr = 255;

b

else if (pwr < 0) {
pwr = 0O;

+

setMotor(dir, pwr, PWM, IN1, IN2);

//Velcity control PID Function

float calculatePIDVel(float errorValue)

{
edot = (errorValue - previousError) / deltaT; //edot = de/dt - derivative term
errorIntegral = errorIntegral + (errorValue * deltaT);
Serial.println(errorIntegral);
if (errorIntegral > 480) {
errorIntegral = 480;
} else if (errorIntegral < -480) {
errorIntegral = -480;
}
controlSignal = (proportional * errorValue) + (derivative * edot)
+ (integral * errorIntegral); //final sum, proportional term also calculated
if (controlSignal > 260) {
controlSignal = 260;
} else if (controlSignal < -260) {
controlSignal = -260;
b
previousError = errorValue; //save the error for the next
iteration to get the difference (for edot)
Serial.println(controlSignal);
return controlSignal;
+

//Velocity and Position Control Encoder

void encoder() {
if (digitalRead(ENCB) == HIGH) // if ENCODER_B is high increase the count
encoderValue++; // increment the count

else // else decrease the count
encoderValue--; // decrement the count

Page 13

Sensors and Motors Lab — Andrew ID: sseivur

//General Motor Function

void setMotor(int dir, int pwmVal, int pwm, int inl, int in2)
{
// Serial.print(pwmVal);
analogWrite(pwm, pwmVal); // Motor speed
if (dir == 1) {
// Turn one wayb
digitalWrite(inl, HIGH);
digitalWrite(in2, LOW);
}
else if (dir == -1) {
// Turn the other way
digitalWrite(inl, LOW);
digitalWrite(in2, HIGH);
}
else {
// Or dont turn
digitalWrite(inl, LOW);
digitalWrite(in2, LOW);
}
}

Page 14

	Individual Progress
	Sensor and Motors Lab
	Ambient Light Sensor
	DC Motor : Velocity Control

	MRSD Project

	Challenges
	Sensors and Motors Lab
	MRSD Project Challenges

	Team Work
	Anthony Kyu
	Sensors and Motors Lab
	MRSD Project

	Kaushik Balasundar
	Sensors and Motors Lab
	MRSD Project

	Gunjan Sethi
	Sensors and Motors Lab
	MRSD Project

	Parker Hill
	Sensors and Motors Lab
	MRSD Project

	Future Plan
	Quiz
	ADXL335
	Signal Conditioning
	Opamps
	Case 1:
	Case 2:

	Control

	Code

