
Progress Review - 2
Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

2 March, 2022

Autonomous Reaming for Total
Hip Replacement (ARTHuR)

2
Hipster 2022 © All Rights Reserved

Previously

Validation
#1

Validation
#1

Validation
#2

Validation
#2

Preliminary controls formulation

Validation of Test 1: Reading and displaying camera’s serial number

3
Hipster 2022 © All Rights Reserved

Schedule

✔

Hardware: Robot Manipulator!

Kinova Gen3
● Available until December 2022
● On-going discussions on porting code to

Kinova Link-6 when APIs are made
available

Figure: Workspace setup

5
Hipster 2022 © All Rights Reserved

Progress Review #2 Tests

✓ Marker Pose Detection Test
✓ Marker Pose Visualization Test
✓ Preliminary Point Cloud Registration Test
✓ Documentation

Perception and Sensing

Perception and Sensing

Perception and Sensing

Further Updates
✓ Registration
✓ Controls
✓ Simulation
✓ Hardware

Planning and Controls

Hardware

Perception and Sensing

Planning and Controls

Perception and Sensing

Progress Review - 2
Tests

Goal: Read camera measurements

from a ROS Node, identify the fiducial

points with a pre-loaded geometry file

and print the 6DOF marker pose.

Approach: Add functionality onto the

previously developed camera_node to

detect marker poses using the provided

Atracsys SDK.

Test 2: Marker Pose Detection Test

Test 2: Marker Pose Detection Test

SNo. Approach Pros Cons

1 Develop custom functions for
triangulation and marker pose
detection.

- Deep understanding
of codebase.

- Lighter
implementation

- Complex s/w engineering
issues

- Writing low-latency code is
difficult

2 Use marker pose detection
APIs from Atracsys SDK

- Preprocessing of
images not required.

- Robust, well-tested
codebase.

- Cannot resolve any latency
blocks.

- Less documentation -
customization will be
time-consuming

Test 2: Marker Pose Detection Test

Figure: Marker (left) Usage of Marker on
Registration Probe (right)

Figure: Test 2 Setup

Results:

✓ Camera’s serial number printed

✓ Geometry file loaded

✓ Marker pose printed in terminal

Test 2: Marker Pose Detection Test

Challenges:

➔ The code was not reliable; marker would not be detected robustly.

● Issue was resolved by marker recalibration

● Re-calibration of the marker geometry was performed using the GUI

● New geometry loaded onto the GUI to test the marker detection

robustness

● The results were as expected within the error tolerance values

Test 2: Marker Pose Detection Test

Test 2: Marker Pose Detection Test

Figure: Marker Re-calibration Results

Goal:

● Part 1. Publish 6-DoF marker

pose on a ROS topic &

broadcast the transform.

● Part 2. Visualize the marker

frame on RViz at >50Hz

Test 3: Marker Pose Visualization Test

Test 3: Marker Pose Visualization Test

SNo. Approach Pros Cons

1 Use Eigen - Well tested code
- Low latency
- Popular choice

- Typecasting to Eigen
message to ROS message
required

2 Use tf libraries (rot_to_quat) - Well tested code
- No typecasting

required
- Popular choice

- Deprecated functions; several
dependency issues

3 Write a custom function - Very simple
implementation

- Need to perform robust testing
and ensure FPS retention

Approaches (Rotation Matrix to Quaternion)

Convert the incoming Marker frame to geometry_msgs/PoseStamped Message type.

Test 3: Marker Pose Visualization Test

Results

✓ Camera's serial number is printed.

✓ Geometry file is loaded.

✓ Pose published to a topic & appears on

command-line (Part 1)

✓ Marker frame visualized on RViz (Part 2)

Figure: Marker Detection Test Results

Test 3: Marker Pose Visualization Test

Figure: Marker TF Broadcasting on RViz

Challenges:

➔ TF functions not supported on TF2
◆ Lack of functionality to convert rotation matrices to quaternion in TF2

◆ TF2 required quaternion for rotation - did not support rotation matrices

➔ Eigen to ROS TF message conversion
◆ Eigen outputs needed to be extracted and type-casted to ROS compatible dependencies

➔ Debugging Missing Dependencies
◆ CMake Errors were always not indicative of the root issue - debugging this took time

➔ Marker TF not visible on RViz
◆ Units conversions and flipping of coordinate axes

Test 3: Marker Pose Visualization Test

Test 4: Preliminary Point Cloud Registration Test

Overview:

Goal: Validate the ability of the chosen algorithm
to register the simulated acetabulum point cloud
with the 3D scanned point cloud of the pelvis

Approach: Improve upon the ICP registration
package offered by Open3D

Test 4: Preliminary Point Cloud Registration Test
Approaches: Algorithms & Tools

● Tools: Open3D / ITK / PCL
○ Python-friendly
○ Prior experience

● Algorithms: Iterative Closest Point /
Learning-based Methods

○ Native Open3D implementations &
support

○ Industry standard for several years
○ Verified as a reliable method in

other medical robotics applications

Figure: Registration Methods Overview

Test 4: Preliminary Point Cloud Registration Test
Approaches: Acquiring Test Model for Registration

● Off-the-shelf 3D model
● 3D scan model using Laser scanner (Konica Minolta Vivid 9i)
● 3D scan model using Camera / LiDAR setup (iPAD Pro / Kinect)

Figure: Konica Minolta Vivid 9i Figure: iPad ProFigure: Off-the-shelf 3D model

Test 4: Preliminary Point Cloud Registration Test
Preliminary Experimentation

Figure: Two Pointclouds
Initialized

Figure: Result after
RANSAC and upsampling

Figure: ICP Registration
after Downsampling

Figure: Custom Pointclouds

Test 4: Preliminary Point Cloud Registration Test

Validation

Figure: Source and target pointclouds Figure: Downsampled pointclouds after
initial registration

Figure: Point-to-point distance cost
function results after RANSAC

refinement

Test 4: Preliminary Point Cloud Registration Test

Challenges

● Post-processing 3D model from the scanner
○ Hole-filling using Autodesk MeshMixer

● Point cloud density differences
○ Source: 3D scanned pelvis (56704

points)
○ Target: Acetabular Surface (373

points)
● Hyperparameter tuning for registration and

refinement
● RANSAC for fine-tuning post registration 373 Points 56704 Points

Figure: Density disparity between
source and target pointclouds

Further Updates

Simulation Update

Figure: Simulation Environment on Gazebo & RViz

https://docs.google.com/file/d/19p_DniX5Erl43dxHhYoqtYaY-dv-T7Uv/preview

Controls Update: Tasks

● Updated Optimal Control Problem w/
Guidance from Professor Zachary
Manchester

● Create Model and Dynamics in Julia
using packages from the CMU Robot
Exploration Lab

● Write Constraints and Objective
function in Julia

Figure: Control Architecture

Figure: Initial Optimal Control Formulation

Controls Update: Tasks

● Updated Optimal Control Problem w/
Guidance from Professor Zachary
Manchester

● Create Model and Dynamics in Julia
using packages from the CMU Robot
Exploration Lab

● Write Constraints and Objective
function in Julia

Figure: Control Architecture

Figure: Initial Optimal Control Formulation

Controls Update: Challenges

● Documentation is a little scattered:
○ Some libraries have dependencies on

older versions of other libraries
● Even though packages have dynamics

calculations, it doesn’t provide an easy way
to add external forces into consideration

● The way constraints are implemented in
the packages makes it so that we have to
keep track of extra variables within our
state

○ Constraints must be directly from the
state or control vectors

○ Those extra variables’ dynamics also
need to be calculated

Figure: Updated Optimal Control Formulation

Controls Update: Code

Figure: Problem Constraints Code

Figure: Dynamics Implementation Code

Hardware Update: Vention Table

Update
● Set up a Vention Table stand for

our robot arm!
Challenges:

● Had to hand tap M8 holes into
some of the Vention bars for
connections to be properly made

● Spent large amount of time
attaching the Vention together

Future Work:
● Get wooden base created for the

bottom of the table for electrical
components and storage

● Mount e-stop
Figure: Vention Table Assembled

Hardware Update: Kinova Gen3 Arm

Update
● Set up the Kinova Gen3 Arm!

Challenges:
● Had to exchange the other robot arm

we previously had
● Needed to move around some of the

Vention bars to fit the base, and it
could still only fit sideways.

Future Work:
● Begin working on controlling the arm

with ROS

https://docs.google.com/file/d/1Lflps_dh77ZbLetakAHLSSaFnRUCb5-q/preview

Hardware Update: PCB Designed for End-Effector

Update
● Created a motor control PCB

schematic for controlling a brushed
DC motor for the acetabular
reamer assembly

Challenges:
● Realized a power distribution

system was less needed for our
system and thus changed our PCB
to be more of a motor control PCB

● Had some issues with creating
libraries of custom parts

Future Work:
● Finalize parts and board layout
● Order parts for the end-effector

Hardware Update: End-Effector Redesign

Update
● Redesigned our end-effector based on

feedback from sponsor
● Now going for a clamping design as

seen on the right
Challenges:

● 3D printed many similar designs with
dimensional differences to find best fit

Future Work:
● Prototype final clamping design and

look into rubbers that could be used
with clamp

● Finalize end-effector design

Project Management Update: Updated Jira Roadmap

● Continue to work in 2-week sprints
● Hackathons on Fridays!

Plans : Progress Review 3

36
Hipster 2022 © All Rights Reserved

Progress Review #3 Tests

❏ Landmark Capture
❏ Waypoint/Trajectory Generation
❏ Position and Force Control in Simulation
❏ Reamer Motor Speed and Torque

Perception and Sensing

Planning and Controls

Hardware

Planning and Controls

Thank you!

Questions & Discussion

