~IPSTER

Autonomous Reaming for Total
Hip Replacement (ARTHuUR)

Progress Review - 2

Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

2 March, 2022

RENEET TR E R S S TR NTREREEY
T R T S S R R R ST S ST T

Previously

H-1
: ! T ! 7 L
min —(zy—z2d)' Q(zy—zd) + Z (2 —2d)" Q2 —zd) + su Ruy,
up.ke[1LH 2 2 2
k=1
[xi1 1 [Xp+Xih
XK+ Xi+uyh+ Fyph
Validation Vial Ye+Yih
Vil Yituyh+Fych
Zk+l Zk+2kh
- Camera's serial number is printed. Validation ot |F| 2| Fetuckh+Foph
- Geometry file is loaded. #1 T | bk Or+drh
(/’k.+l (,/)./‘- +u¢,.,\-lz+M¢..kh
$ rosrun atracys publisher camera node Hk,*l 5 ”“'+H/"h
VETF=it O+ Or+ugh+Mgih
R :
i Uist Ui +dh
(Wis1]| |k tuych+Myh]
”lewnul” < FMul
”vk” 5 V,’HU\'
. , . X —Xql| £ €
Validation of Test 1: Reading and displaying camera’s serial number Ik = xall
[lye—yall &

Preliminary controls formulation

Schedule

- . -
Identifier Associated Tests
V Progress Review 1 |- Test camera health and camera discovery via a Test 1 M.E1
2/16/2022 ROS Node. =
T
- Broadcast marker pose as a ROS transform & e M.F.1
Progress Review 2 i Test 3
M.F.3
31212022 : 3 %
- Validate the preliminary performance of the Test 4
registration algorithm chosen M.N.1

Hipster 2022 © All Rights Reserved

Hardware: Robot Manipulator!

@l

h xiNove

Kinova Gen3
e Available until December 2022

On-going discussions on porting code to

Kinova Link-6 when APIs are made
available

Figure: Workspace setup

Progress Review #2 Tests

Marker Pose Detection Test

Marker Pose Visualization Test
Preliminary Point Cloud Registration Test
Documentation

NSNS S

Further Updates

v Registration

v Controls = ranningand controls
v/ Simulation Planning and Controls
v Hardware

Progress Review - 2
Tests

Test 2: Marker Pose Detection Test

Goal: Read camera measurements
from a ROS Node, identify the fiducial
points with a pre-loaded geometry file

and print the 6DOF marker pose.

Approach: Add functionality onto the
previously developed camera_node to
detect marker poses using the provided
Atracsys SDK.

Test 2:

Marker Pose Detection Test

Objective

Test fiducial marker detection via a ROS Node.

Equipment MRSD Desktop 2, Atracys SpryTrack 300 Camera, Markers
Elements Perception Subsystem

Personnel Gunjan Sethi

Location NSH Basement

Procedure

1. Run the camera_node ROS Node and wait for the node to discover the camera.
2. Wait for the ROS Node to load the geometry file.
3. Place markers in front of the camera.

Validation

- Camera's serial number is printed.
- Geometry file is loaded.
- The marker pose is printed.

Test 2: Marker Pose Detection Test

SNo. Approach Pros
1 Develop custom functions for - Deep understanding
triangulation and marker pose of codebase.
detection. - Lighter
implementation
2 Use marker pose detection - Preprocessing of
APIs from Atracsys SDK images not required.

- Robust, well-tested
codebase.

Cons

Complex s/w engineering
issues

Writing low-latency code is
difficult

Cannot resolve any latency
blocks.

Less documentation -
customization will be
time-consuming

Test 2: Marker Pose Detection Test

Figure: Marker (left) Usage of Marker on
Registration Probe (right)

Figure: Test 2 Setup

Test 2: Marker Pose Detection Test

8 T TERMINAL

Results:

Right Count: 3

Fiducia ount- 0
Found!
ge ry 9990
y " . rotation (-0.41 -0.91 0.05 -0.90 2 0. -0.12 -0.01 -0.99)
r (15 5 90) - 0
v Camera’s serial number printed ans (157,47 105.72 677.0)error 0.1
B s Count-

Left Cour

v Geometry file loaded Rione Con

Fiduc
Found!

geor

/ Marker pose printed in termina' : v:ottai}ilon (-0.41 -0.91 0.06 -0.90 0.42 0.11 -0.12 -0.61 -0.99)

8.79), error 0.

0

ion (-0.41 -0.91 0.06 -0.90 0.42 0.11 -0.12 -0.00 -0.99)
(157.38 104.41 679.62), error 0.185

Test 2: Marker Pose Detection Test

Challenges:

=> The code was not reliable; marker would not be detected robustly.

Issue was resolved by marker recalibration

Re-calibration of the marker geometry was performed using the GUI
New geometry loaded onto the GUI to test the marker detection
robustness

The results were as expected within the error tolerance values

Test 2: Marker Pose Detection Test

Figure: Marker Re-calibration Results

Test 3: Marker Pose Visualization Test

Goal:

e Part 1. Publish 6-DoF marker
pose on a ROS topic &
broadcast the transform.

e Part 2. Visualize the marker

frame on RViz at >50Hz

Test 3:

Marker Pose Visualization Test

Objective

Test the publishing of marker poses onto a ROS topic and visualizing markers
using RViz.

Equipment MRSD Desktop 2, Atracys SpryTrack 300 Camera, Markers
Elements Perception Subsystem

Personnel Gunjan Sethi
Location NSH Basement

Procedure

1. Run the camera_node ROS Node and wait for the node to discover the
camera.

2. Wait for the ROS Node to load the geometry file.

3. Place markers in front of the camera.

4. Run rostopic command-line tool to view messages on the marker-pose
topic in ROS.

5. Run RViz

Validation

- Camera's serial number is printed.

- Geometry file is loaded.

- rostopic command line shows marker poses.
- Markers appear on RViz.

Test 3. Marker Pose Visualization Test
Approaches (Rotation Matrix to Quaternion)

Convert the incoming Marker frame to geometry _msgs/PoseStamped Message type.

SNo. Approach Pros Cons
1 Use Eigen - Well tested code - Typecasting to Eigen
- Low latency message to ROS message
- Popular choice required
2 Use ff libraries (rot_to_quat) - Well tested code - Deprecated functions; several
- No typecasting dependency issues
required

- Popular choice

3 Write a custom function - Very simple - Need to perform robust testing
implementation and ensure FPS retention

Test 3: Marker Pose Visualization Test

8 T TERMINAL

position:
X: 179.99940490722656
Results y: 103.96468353271484
Z: 912.7316284179688
orientation:
X: -0.3068847728014501
y: 0.938043516281239

' ' iS pri ©: ©.017864645773225443
v Camera's serial number is printed.
position: e e
v Geometry file is loaded. Ji 103 6546716308938

z: 912.8483276367188
orientation:
/ P bl h dt t . & X: .29747654264783296
y: 0.9412360136353184
Ose pu IS e O a OpIC appears On z: 0.1588864334747869
w: 0.01837320192802982

- position:

Command |Ine (Part 1) x: 178.1487579345703
y: 103.60475158691406

. . . Zz: 912.953857421875

v Marker frame visualized on RViz (Part 2) s
X: -0.28920635113952475
y: 0.9440958690333532
z: 0.15711438162071895

vi: 0.018914201556084274

Figure: Marker Detection Test Results

Test 3: Marker Pose Visualization Test

marker

camesa

Figure: Marker TF Broadcasting on RViz

Test 3: Marker Pose Visualization Test

Challenges:

=> TF functions not supported on TF2

¢ Lack of functionality to convert rotation matrices to quaternion in TF2

¢ TF2required quaternion for rotation - did not support rotation matrices
-> Eigen to ROS TF message conversion

¢ Eigen outputs needed to be extracted and type-casted to ROS compatible dependencies
=> Debugging Missing Dependencies

¢ CMake Errors were always not indicative of the root issue - debugging this took time
-> Marker TF not visible on RViz

¢ Units conversions and flipping of coordinate axes

Test 4: Preliminary Point Cloud Registration Test

Overview:

Goal: Validate the ability of the chosen algorithm
to register the simulated acetabulum point cloud
with the 3D scanned point cloud of the pelvis

Approach: Improve upon the ICP registration
package offered by Open3D

Test 4:

Preliminary Point Cloud Registration Test

Objective

Validate the selection of the registration algorithm for the use-case and test the
ability of the registration algorithm to register the simulated fiducial points onto the
pelvis point cloud.

Equipment MRSD Desktop 2, Atracys SpryTrack 300 Camera, Markers
Elements Perception Subsystem

Personnel Kaushik Balasundar

Location NSH Basement

Procedure

1. Load two pointsets, one of the complete pelvis model and the other of the
downsampled point cloud from the surface of the acetabulum.

2. Run the selected registration algorithm and visually validate the transformation
from pointcloud A to pointcloud B.

Validation

- Pointcloud B needs to be roughly overlapping with pointcloud A's acetabulum
region to indicate that the registration has taken place.

Test 4: Preliminary Point Cloud Registration Test

Approaches: Algorithms & Tools

e Tools: Open3D /ITK/PCL
o Python-friendly
o Prior experience
e Algorithms: Iterative Closest Point /
Learning-based Methods
o Native Open3D implementations &
support
o Industry standard for several years
o \Verified as a reliable method in
other medical robotics applications

[Point cloud registration]

I Same-source I

v

, ’

Optimization-based

[Feature-learning] [End-to—end-leaming]

o

ot ik

[ICP-based] [Volumetric : [Regression]
. ; i ! [Neural network & |
Graph-based : [Ramicloud] : L optimization H

GMM-based

Semi-definite

i |Optimization-based |
i | Learning-based | |

Figure: Registration Methods Overview

Test 4: Preliminary Point Cloud Registration Test

Approaches: Acquiring Test Model for Registration

e Off-the-shelf 3D model
e 3D scan model using Laser scanner (Konica Minolta Vivid 9i)
e 3D scan model using Camera / LIDAR setup (iPAD Pro / Kinect)

Figure: Off-the-shelf 3D model Figure: Konica Minolta Vivid 9i Figure: iPad Pro

Test 4: Preliminary Point Cloud Registration Test

Preliminary Experimentation

Figure: Two Pointclouds Figure: ICP Registration Figure: Result after
Initialized after Downsampling RANSAC and upsampling

Figure: Custom Pointclouds

Test 4: Preliminary Point Cloud Registration Test

Validation

Validation

- Pointcloud B needs to be roughly overlapping with pointcloud A's acetabulum
region to indicate that the registration has taken place.

Figure: Point-to-point distance cost
function results after RANSAC
refinement

Figure: Downsampled pointclouds after
initial registration

Figure: Source and target pointclouds

Test 4: Preliminary Point Cloud Registration Test

Challenges

Post-processing 3D model from the scanner
o Hole-filling using Autodesk MeshMixer
Point cloud density differences
o Source: 3D scanned pelvis (56704
points)
o Target: Acetabular Surface (373
points)
Hyperparameter tuning for registration and
refinement
RANSAC for fine-tuning post registration

373 Points

56704 Points

Figure: Density disparity between
source and target pointclouds

)
Further Updates

Simulation Update

Figure: Simulation Environment on Gazebo & RViz

https://docs.google.com/file/d/19p_DniX5Erl43dxHhYoqtYaY-dv-T7Uv/preview

a
Controls Update: Tasks

H-1

e Updated Optimal Control Problem w/ Cmin % (55— 5d) O (11—) + Z%m—sd)TQ(sk—.vd)+ % T Ruy
Guidance from Professor Zachary A e
= q =2
Manchester o lql_ M-'(T-TE,,C,,,‘,,-cq-c)] e q]
e Create Model and Dynamics in Julia U =T < Titax
. “FE.\'u’rnuI” = HBE.\'M'rnalJ‘ik“ < FMu.\
using packages from the CMU Robot X1 = 4kl < Xntas
Exploration Lab 94€q Limiss
. . . . (] .6(} Jimits
e Write Constraints and Objective - o _
.) . Figure: Initial Optimal Control Formulation
function in Julia o

* Federnal S Fuax

* Feenal = Bextemar ™ Vi
o V< Vi 9
» Dynamics
« Joint imits

Kinova Gen 3 (7 DOF)

= Sl Reference ; Reference i Eactual .
J H 2 : t
qd —— zlsmg OdSVQe:’ torque Joiek Grou BIfort orave Robot - Plant :k
Solver in Julia ; Controller Manipulator Fevemal

Figure: Control Architecture

a
Controls Update: Tasks

H-1

e Updated Optimal Control Problem w/ Cmin % (55— 5d) O (11—) + Z%m—sd)TQ(sk—.vd)+ % T Ruy
Guidance from Professor Zachary A e
= q =2
Manchester o lql_ M-'(T-TE,,C,,,‘,,-cq-c)] e q]
e Create Model and Dynamics in Julia U =T < Titax
. “FE.\'u’rnuI” = HBE.\'M'rnalJ‘ik“ < FMu.\
using packages from the CMU Robot X1 = 4kl < Xntas
Exploration Lab 94€q Limiss
. . . . (] .6(} Jimits
e Write Constraints and Objective - o _
.) . Figure: Initial Optimal Control Formulation
function in Julia o

* Federnal S Fuax

* Feenal = Bextemar ™ Vi
o V< Vi 9
» Dynamics
« Joint imits

Kinova Gen 3 (7 DOF)

= Sl Reference ; Reference i Eactual .
J H 2 : t
qd —— zlsmg OdSVQe:’ torque Joiek Grou BIfort orave Robot - Plant :k
Solver in Julia ; Controller Manipulator Fevemal

Figure: Control Architecture

Controls Update: Challenges

e Documentation is a little scattered: # Calculate dynamics , ,
. . . RigidBodyDynamics.dynamics!(dynamicsResult, mechanismState, u)
©) Some libraries have dependenCIeS ON # Add the effects of external forces/torques into dynamics
older versions of other libraries QRGNS e EesRERULE V) 2 Riedh)
e Even though packages have dynamics
calculations, it doesn’t provide an easy way
. . B H-1
to add external forces into consideration min %(S,,__,.,,)TQ,,(,Y,,_.,JH Z%(Sk_,s-d)rg(xk_,-d)\;%ug;e,,k
e The way constraints are implemented in ™" £l

the packages makes it so that we have to 1 | | tnm=ci=a) ?
keep track of extra variables within our = i T Jg+lg Swesl g
state uF -E-[r<'lr Besernat (1§ +74) Bibrurmol
o Constraints must be directly from the ||AFF....,(.,,,a1iv|':||BE_m,,,,.,,qu|| < Fiax
state or control vectors 1X11 = 11 4k]l < Xatan
o Those extra variables’ dynamics also qkEd Limits
QL€ Limirs

need to be calculated

Figure: Updated Optimal Control Formulation

Controls Update: Code

function RobotDynamics.dynamics(model::Arthur, x, u)

end

Create a state of the mechanism model and a result struct for the dynamics
dynamicsResult = RigidBodyDynamics.DynamicsResult(model.mechanism)
mechanismState = RigidBodyDynamics.MechanismState(model.mechanism)

Get states and constants of system not dependent on model state
M = RigidBodyDynamics.mass matrix(mechanismState)
num_q = RigidBodyDynamics.num positions(model.mechanism)
q = x[1:num_q]
qd = x[num_q+1:2*num q]
xd = x[2*num_q + 1:2*num q + 6]
F = x[2*num_q + 7:2%num _q + 12]
Be = zeros(6, 6)
if (norm(xd) > le-5)

for k = 1:3

Bel[k,k] = norm(F) / norm(xd)

end

end

Set mechanism state to current state
RigidBodyDynamics.set configuration!(mechanismState, q)
RigidBodyDynamics.set velocity!(mechanismState, qd)

Get variables dependent on state
J = getJacobian(model, q, qd)
T_ext = transpose(J)*Be*xd

Calculate dynamics

RigidBodyDynamics.dynamics! (dynamicsResult, mechanismState, u)
Add the effects of external forces/torques into dynamics
qdd = M\((M * dynamicsResult.v) - T _ext)

X = getJ(model, J, qd, q)*qd + J*qdd

F = Be*x)

return [qd; qdd; X; F; 0; 0; 0; 0; 0; 0]

Figure: Dynamics Implementation Code

Create Empty ConstraintlList
conSet = ConstraintList(n,m,N)

Control Bounds based on Robot Specs (Joint torque limits)
u bnd = [39.0, 39.0, 39.0, 39.0, 9.0, 9.0, 9.0]

cantrolibnd = BoundConstraint(n,m, u_min=-u_bnd, u_max=u_bnd)

add_constraint!(conSet, control bnd, 1:N-1)

State Bounds based on Robot Specs (Joint velocity and speed limits)

x_bnd = zeros(26)

x:bnd[1:7] = [Inf, deg2rad(128.9), Inf, deg2rad(147.8), Inf, deg2rad(120.3), Inf] # rad
x_bnd[8:14] = [1.39, 1.39, 1.39, 1.39, 1.22, 1.22, 1.22] # rad/sec

x_bnd[15:end] = [Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf] # Constraints on force elsewhere

state bnd = BoundConstraint(n,m, x min=-x_bnd, x_max=x_bnd)
add constraint!(conSet, state_bnd, 1:N)

Cartesian Velocity Bound

X_max = 0.0005 # m/s

vel _bnd = NormConstraint(n, m, X max, Inequality(), 15:20)
add constraint!(conSet, vel bnd, 1:N)

Force Bound

F_max = 20 # Newtons

F_bnd = NormConstraint(n, m, F_max, Inequality(), 21:26)
add constraint!(conSet, F_bnd, 1:N)

Goal Constraint
goal = GoalConstraint(xf)
add constraint!(conSet, goal, N)

Figure: Problem Constraints Code

Hardware Update: Vention Table

Update

e Set up a Vention Table stand for

our robot arm!
Challenges:

e Had to hand tap M8 holes into
some of the Vention bars for
connections to be properly made

e Spent large amount of time
attaching the Vention together

Future Work:

e Get wooden base created for the
bottom of the table for electrical
components and storage

e Mount e-stop

Figure: Vention Table Assembled

Hardware Update: Kinova Gen3 Arm

Update
e Set up the Kinova Gen3 Arm!
Challenges:
e Had to exchange the other robot arm
we previously had
e Needed to move around some of the
Vention bars to fit the base, and it
could still only fit sideways.
Future Work:
e Begin working on controlling the arm
with ROS

https://docs.google.com/file/d/1Lflps_dh77ZbLetakAHLSSaFnRUCb5-q/preview

Hardware Update: PCB Designed for End-Effector

Update

e Created a motor control PCB
schematic for controlling a brushed
DC motor for the acetabular
reamer assembly

Challenges:

e Realized a power distribution
system was less needed for our
system and thus changed our PCB
to be more of a motor control PCB

e Had some issues with creating
libraries of custom parts

Future Work:
e Finalize parts and board layout
e Order parts for the end-effector

Motor Power Distribution Board

Team C: Task 11

Hardware Update: End-Effector Redesign

Update

e Redesigned our end-effector based on
feedback from sponsor

e Now going for a clamping design as
seen on the right

Challenges:

e 3D printed many similar designs with

dimensional differences to find best fit
Future Work:

e Prototype final clamping design and
look into rubbers that could be used
with clamp

e Finalize end-effector design

Project Management Update: Updated Jira Roadmap

. FEB MAR APR
Epic

Progress Review 2 Progress Review 3 Progress Review4 Progress Review 5 Report

> 3 HRR-182 Environment Setup

> B3 HRR-82 Hardware Setup

> EJ HRR-91 Perception and Sensing

> B HRR-92 Controls and Actuation

> B3 HRR-93 Motion Planning
> B HRR-101 Project Course

> B3 HRR-108 Business Course

HRR-179 Project Management

e Continue to work in 2-week sprints
e Hackathons on Fridays!

o>

Plans : Progress Review 3

Progress Review #3 Tests

Landmark Capture
Waypoint/Trajectory Generation

(I Ny WAy N

Reamer Motor Speed and Torque

Planning and Controls

Position and Force Control in Simulation paning and controls

36

Thank you!
~
Questions & Discussion

