

Autonomous Reaming for Total Hip Replacement (ARTHUR)

Progress Review - 3

Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

23 March, 2022

Previously

Validation of Test 4: Camera-ROS Integration Test

Hardware Setup

camesa

marker

Schedule

V

	Schedule		
Identifier	Capability Milestone(s)	Associated Tests	System Requirements
Progress Review 1 2/16/2022	- Test camera health and camera discovery via a ROS Node.	Test 1	M.F.1
	- Broadcast marker pose as a ROS transform &	Test 2	M.F.1
Progress Review 2	ROS topic	Test 3	M.E.3
3/2/2022	- Validate the preliminary performance of the registration algorithm chosen	Test 4	M.N.1
	- Probe is able to be used to create a point cloud which can be visualized	Test 5	
Progress Review 3	- Control method is capable of being used with robot manipulator virtually	Test 11	M.F.1
3/23/2022	- Waypoint and trajectory generation working in	Test 13	M.F.2
	ROS	Test 17	
	- Hardware verified for use in reamer assembly		5

Progress Review #3 Tests

- ✓ Landmark Capture Test
- ✓ Waypoint/Trajectory Generation Planning and Controls
- Position and Force Control in Simulation
- ✓ Reamer Motor Speed and Torque

Further Updates

Registration Perception and Sensing
 Controls Planning and Controls
 Simulation Planning and Controls
 Hardware Hardware

Perception and Sensing

Planning and Controls

Progress Review - 3 Tests

Test 3: Landmark Collection Test

Goal: Read camera measurements from a ROS Node, identify the fiducial points with a pre-loaded geometry file and print the 6DOF marker pose, and store as a pointcloud for visualization on RViz.

Approach: Add functionality onto the previously developed camera_node to detect marker poses convert to a PointCloud2 message and publish as a topic.

	Test 5 :
	Landmark Capture Test
Į	Objective
Test the use of and test the at	f the registration probe to record fiducial landmarks on pelvis bility to use Open3D to store the selected points as a pointcloud
Equipment	Atracys Sprytrack 300 Camera, Markers, Registration Probe MRSD Computer 2, Model Pelvis
Elements	Perception Subsystem
Personnel	Gunjan Sethi & Kaushik Balasundar
Location	NSH Basement
	Procedure
1. Use the reg field of view of 2. Once done, pointcloud.	istration probe to slide through the acetabuluar surface in the the camera. run ROS script to visualize the captured points as Open3D
	Validation
- The resulting window. It mus acetabular sur	visualization must be in the form of an Open3D visualization st display the captured points that depicts the surface of the face.

Test 3: Landmark Collection Test

SNo.	Approach	Pros	Cons
1	Record fiducial 3D translation, closest to the tip of the probe	 Point closest to the tip of the pelvis 	 Might not be more accurate compared to the marker pose.
2	Record marker 3D translation	- More accurate	- The transformation from point recorded and pelvis might be needed for better accuracy.

Test 3: Landmark Collection Test

Challenges:

- → Obtaining the pose of the probe tip
 - Current algorithms in the SDK provide methods to only capture fiducials and marker positions; need a way to capture exactly probe tip position or learn a transformation between captured point and probe tip.
- → Understanding sensor_msgs/PointCloud2.msg
 - Working with the incoming frames from the Atracsys SDK to correctly typecaste into PointCloud2 type.
 - Understanding the data array of the message.
- → Testing against ground truth
 - Brainstormed to define tests to test the scale accuracy and effect of orientation on landmark collection.

Test 3: Landmark Collection Test: [Internal Test] Results

Goal:

- → Test if landmark collection is at correct scale
- → Understand effect of orientation of probe on landmark collection

Test: Obtain an object with known geometry. Record an initial point. Slide probe in one orientation towards an end-point along one dimension. Record the distance covered. Try various orientations.

Results:

 \checkmark Points up to 1-2 cm at scale + variations in orientation.

Landmark collection test on object with known geometry

Test 3: Landmark Collection Test: Results

Landmark Visualization on RViz

Pointcloud Collection using Registration Probe

H

Test 11: Waypoint/Trajectory Generation Test

Overview:

Goal: Test the generation of waypoints and trajectories using Movelt! And verify that the arm moves along the trajectory in simulation and reality

Approach: Visual validation of trajectory following capability of Kinova Gen3

T	Test 11:
	Waypoint/Trajectory Generation Test
	Objective
To test Movelt in space) to th	to generate a trajectory from a start point(any point robot is left e end point
Equipment	MRSD System 2, Arm, Markers, Reaming tool
Elements	Motion Planning
Personnel	Sundaram Seivur
Location	NSH Basement
	Procedure
1. Move manip 2. Mark curren 3. Run ROS se end point.	oulator close to the pelvis model using free motion mode it pose as start point for manipulator. cript to invoke Movelt to generate trajectory between start and
	Validation
	and the second second
 Check in sim Check visual 	ulation if arm is moving along generated trajectory. Iy if arm is moving along similar axis in reality.

Test 11: Waypoint/Trajectory Generation Test

- Moved to using Pilz Industrial Motion planner instead of OMPL
 - Deterministic motion and repeatable trajectories
 - Essentially need only trajectory planning and not motion planning
- Generated IKFast plugin to be used as IK solver instead of KDL
 - IKFast is an analytical solver in place of KDL which is a numerical solver
 - Repeatable and stable solutions
- Connected Gen3 via ethernet to validate if arm can communicate with external sources
 - Send random trajectories to be followed; generated using Movelt!
 - Send joint state and cartesian pose command using a ROS node

Test 11: Waypoint/Trajectory Generation Test

Test 11: Trajectory using Pilz Industrial Planner

Test 13 (Revised): Position Control in Simulation Test

Goal: To test the initial capabilities of the MPC in following a trajectory given constraints (joint positions and velocities).

Approach:DevelopMPCusingpre-existinglibrariessuchasALTRO,TrajectoryOptimization,andRigidBodyDynamicsinJulia

	Test 13 :
	Position Control in Simulation Test
	Objective
To test the ability o exceeding a joint p	f the MPC controller to move to desired positions without osition and velocity constraints.
Equipment	System with Hipster Test Environment (MRSD Desktop 2)
Elements	Controls & Actuation Subsystem
Personnel	Anthony Kyu
Location	NSH Basement
	Procedure
 Provide MPC wi Run the MPC so and velocities. Measure the erro given trajectory. 	th a desired trajectory containing joint positions and joint velocities. Ner and get joint torques along with corresponding joint positions or of the MPC final endpoint with the desired endpoint from the
	Validation
- Pose error of the degrees.	final endpoint of the trajectory should be +/- 2 mm and +/- 3

Test 13 (Revised): Position Control in Simulation Test

File Edit V	New Insert Cell Kernel Wagets Help	Truced Jula 1.6.5 O	
5 + 2 2	10 + + + Hun ■ C + Cost - 10		
Ie (31):	<pre>1 # Set op 2 # 7000; Twwo weights 3 0 = 100 #P0iagonal(SSVector ones(n)) 6 of = 100#P0iagonal(SSVector ones(n)) 5 R = 1.0e.*P0iagonal(SSVector ones(n)) 6 obj = TrajectoryOptimization.TrackingObjective(0, R, traj, 0f=0f)</pre>		
40(4131);	Objective		
In [32]:	<pre>1 # Create Empty ConstraintList 2 conSet = ConstraintList(n,m,N) 3 # Control Bounds based on Robot Specs (Joint Corowe Limits) 5 u bod = [39.0, 39.0, 39.0, 39.0, 9.0, 9.0, 9.0] 6 control bod = Boundconstraint(n,m, u min=w bod, u macnu bod) add constraint(iconSet, control bod, 1:N-1)</pre>		
	# State Bounds based on Robot Specs (Joint velocity and speed limit 10 x bod = zeros(n) 11 x bod[17] = [Inf, deg2rad[128.9], Inf, deg2rad[147.8], Inf, deg2raf 12 x bod[8:14] = [1.39, 1.39, 1.39, 1.39, 1.22, 1.22, 1.22] # rad/sec 13 x bod[8:14] = [0.55, 0.65, 0.65, 0.65, 0.55, 0.55, 0.55] # rad/sec 14 x bod[15:ed] = [0.55, 0.65, 0.65, 0.65, 0.55, 0.55] # rad/sec 15 x bod[15:ed] = [Inf for kal:(n.14)] # Constraints on force elses 15 state bod = BoundConstraint(n,m, x min-x bod, x maxvx bod) 16 add constraint((conset, state_bod, 1:N)	s) 5(126.3), Int] # red c fere	
	<pre>11 # # Cartesian Velocity Bound 19 # x max = 0.0005 # m/s 10 # veload = NormConstraint(n, m, x max, Inequality(), 21:23) 21 # add_constraint(conSet, vel_bnd, 1:W)</pre>		
	<pre>23 # # Force Bound (Fx Fy F2) 24 # F max = 20 # Maxtems 25 # F back = NoreKonstraint(n, m, F max, Inequality(), 27:29) 26 # add_constraint(conSet, F bad, 3:N) 27</pre>		
	20 # Other possible constraints: 29 # Cartesian angular velocity bounds? 30 # External moment bounds? 31		
	12 # Goal Constraint - only if you want the final state to be the desi 33 # goal = GoalConstraint(xf) 34 # add constraint/(conSet, goal, N)	red state	
In [33]:	1 prob = Problemimodel, obj. Xreflend], tf. x0=Xref[1], constraints=c	onSet, X0=Xref, U0=Uref)	

Figure: The MPC in Simulation

Figure: Desired Trajectory

Results:

- ✓ Positional Error < 2 mm</p>
- Orientation Error < 3 degrees

Poses	and Pose Error Relative to	o World Frame
	Final Position (m)	Final Orientation (RPY - degrees)
Desired Trajectory	[0.214, 0.399, 0.436]	[89.764, -1.893, 91.168]
Model Predictive Controller	[0.214, 0.399, 0.436]	[89.764, -1.320, 91.166]
Norm of Error	0.000 mm	0.573 degrees
Joint State Error:	[0.00015959433561874015, -0.013 -0.00020415288308361923, -0.006 0.004910735548274481, -0.002563 -0.0039981932771855355, 1.15789 0.0025025376776104894, 5.74874 4.2852715328442655e-5, -0.00028 2.2142163532343218e-6, 0.000178	970861054813316, 9550863538767437, 31207105871745, 955204986224e-5, 1903614427e-5, 3492385974444694, 53074183847769]

Challenges:

- → Model Predictive Controller was challenging to get to converge
 - Not much documentation to help solve issue
 - Convergence hinges a lot on initial guesses for desired input/torque trajectory
 - Initial guess is torque required for gravity compensation at every trajectory point
- → Tuning Q and R matrices of MPC

.

Test 17: Reamer Motor Speed and Torque Test

Overview:

Goal: Test the torque and speed of the motor and gearbox, verifying its ability to output the necessary torque to ream the acetabulum

Approach: Utilize rough estimations to verify that the performance of the motor is satisfactory

	Deserve Mater Ores all and Transa Trat					
_	Reamer Motor Speed and Torque Test					
	Objective					
To test the toro the necessary	que and speed of the motor and gearbox and verify it's ability to output torque for the reamer to properly function to ream the acetabulum					
Equipment System with Hipster Test Environment (MRSD Desktop 2), and gearbox from reamer assembly, power supply, video c long piece of wood, weights						
Elements	Reaming subsystem of the hardware system					
Personnel	Parker Hill					
Location	NSH Basement					
	Procedure					
1. Hook up the 2. Using a vide 3. Turn off the measured leng 4. Add weight on the power s orientation wh 5. Repeat step past the specif motor 6. Using the ne speed of 400 r	Procedure e motor to the power supply and increase the applied voltage to 24V eo camera, measure the approximate no load speed power supply and attach a long piece of wood of a specified gth to the motor shaft to the end of the piece of wood and measure the applied torque, turn supply and determine if the motor is capable of moving past an ere the wood is parallel to the floor o 4, increasing weight each time until the motor is incapable of moving fied orientation, mark the resulting torque as the peak torque of the o load speed and peak torque, approximate the max torque at a pm					

Test 17: Reamer Motor Speed and Torque Test

Speed Test:

- Tested the no load speed and found that the rpm is ~600
- No load current was also verified to be 0.52 A
- Test was performed utilizing a video camera and counting the rotations in a 5 second period of time

Torque Test:

- Test performed using a custom motor attachment and a scale in lieu of not having access to a dynamometer
- Approximate stall torque at 4V and 5A found to be around 3.5 kgf-cm, which when scaled provides a potential stall torque of 14 kgf-cm
- With a proper power supply we are confident that the reamer motor will be able to provide the speed and torque we need to ream the acetabulum

A. Operating Conditions:

1	Operating Voltage Range	6~12	VDC	4	Operating Temperature	-10~+60	°C
2	Rated Voltage	12	VDC	5	Storage Temperature	-30~+85	°C
3	Rated Load	2.3	kgf-cm	6	Test Position	Horizontal	~

B. Electrical Characteristics:

1	Max. No-load Current	0.52	A	6	Max. Stall Current	20	Α
2	No-load Speed	612±61	rpm	7	Insulation Resist.(500V)	20	MΩ
3	Rated-load Current	2.0	A	8	Dielectric Strength	250	VAC
4	Rated-load Speed	540±54	rpm	9	Motor Brush Type	Graphite	~
5	Min. Stall Torque	16	kgf-cm	10	Output Power at Max.Eff.	13	W

C. Mechanical Characteristics:

1	Gear Type	Planetary	~	7	Max. Shaft Radial Load	3.5	kgf
2	Gear Ratio	289/3969	~	8	Max. Shaft Runout	0.05	mm
3	Gear Material	Metal	~	9	Max. Shaft End Play	0.30	mm
4	Rated Tolerance Torque	10	kgf-cm	10	Bearing Type	Dual Ball	~
5	Moment. Tolerance Torque	20	kgf-cm	11	Net Weight	330±20	grams
6	Max. Shaft Axial Load	2.5	kgf				

Hardware Update: Reamer End-Effector

Update

• Got the reamer end-effector fully 3D printed and attached to the Gen-3

Challenges:

- The side piece contributes a lot of wobble into the system
- Need shorter screws or for the hole depth to be increased in the force-torque sensor adapter
- Too long, needs to be shortened

Future Work:

- 3D-print new components
- Make or receive shorter reamer handle

Figure: Reamer End-Effector

Hardware Update: Motor Control PCB

Update

• Finalized our motor control PCB

Challenges:

- Had to import, create, and edit many custom parts in Eagle
- Finding some parts in stock ended up being an issue + part elicitation is quite difficult

Future Work:

- Receive PCB and components
- Solder all parts onto the PCB
- Test PCB for efficacy

Figure: Motor Control PCB layers from FreeDFM

Plans : Progress Review 4

Progress Review #4 Tests

- Point Cloud Registration Test
 Perception and Sensing
- Waypoint Generation Compensation
- Position and Force Control in Simulation and Reality
- □ Full Hardware-Test Hardware

Planning and Controls

Planning and Controls

Perception Future Work

- Obtain probe tip pose from the marker geometry (upcoming discussion with sponsor today)
- Explore different publishing frequencies and number of landmark points collected
- Test registration using acquired Pointcloud and CAD model of Pelvis
- Explore manual correspondence matching using predetermined keypoints instead of using a feature detector such as FPFH
- Finalize a method to obtain initial transformation guess for ICP registration
- Evaluate quantitatively effectiveness of using ICP for cross-point sets registration

Motion Planning & MPC Future Work

- Read end-point transformation from perception subsystem and plan trajectory
- Validate error of generated trajectory and trajectory followed in reality using RPG package
- Publish trajectory directly to controller via a topic
- Provide cartesian states from trajectory generator to controller
- Implement additional states (cartesian states and wrench) into MPC
- Implement ROS Nodes that do MPC calculations
- Fully integrate Motion Planning & MPC

Hardware Future Work

- Assemble and test motor control PCB
- Mount power supply and motor control PCB to Vention table
- Redesign end-effector for improved rigidity and decreased length
- Verify full hardware setup efficacy

Thank you! Note: Second Sec