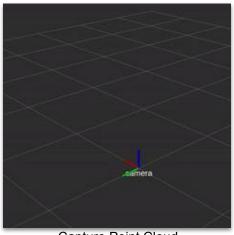
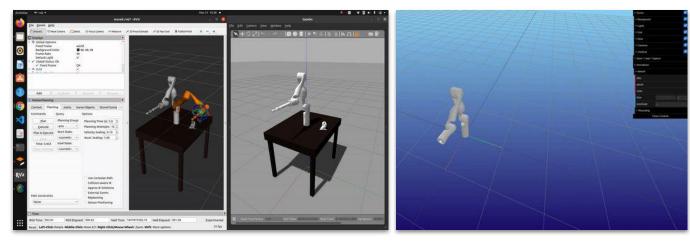


Autonomous Reaming for Total Hip Replacement (ARTHUR)

Progress Review - 4


Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

6 April, 2022


Previously

Capture Point Cloud

Hardware Setup

Planning & Controls

Schedule


Schedule				
Identifier	Capability Milestone(s)	Associated Tests	System Requirements	
Progress Review 1 2/16/2022	- Test camera health and camera discovery via a ROS Node.	Test 1	M.F.1	
Progress Review 2 3/2/2022	- Broadcast marker pose as a ROS transform &	Test 2	M.F.1	
	ROS topic	Test 3	M.F.3	
	- Validate the preliminary performance of the registration algorithm chosen	Test 4	M.N.1	
Progress Review 3 3/23/2022	- Probe is able to be used to create a point cloud which can be visualized	Test 5		
	- Control method is capable of being used with robot manipulator virtually	Test 11	M.F.1	
	- Waypoint and trajectory generation working in	Test 13	M.F.2	
	ROS	Test 17		
	- Hardware verified for use in reamer assembly			
Progress Review 4 4/6/2022	- Test registration using acquired point cloud and CAD models of pelvis			
	- Evaluate quantitatively effectiveness of using		M.F.1	
	ICP for cross-point sets registration	Test 6	M.E.2	
	- Create error and MPC validation pipeline	Test 12	WLF.Z	
	- Implement additional states into MPC and full	Test 14	M.F.3	
	test in simulation	100 March 100	M.F.5	
	- Assemble and test Power Distribution Board	Test 16	M.N.1	
	-Redesign end-effector for improved rigidity and decreased length			

Perception and Sensing

Progress Review #4 Tests

- Test registration using acquired point cloud and CAD models of pelvis
- Evaluate quantitatively effectiveness of using ICP for cross-point sets registration
- ✓ Create error and MPC validation pipeline
- Implement additional states into MPC and full test in simulation
- ✓ Assemble and test Power Distribution Board
- ✓ Redesign end-effector for improved rigidity and decreased length

Acquiring Frame at Probe Tip

Figure: New Registration Probe

Navio files associated with Probe	Additional Information
900212_ProbeTWall.mat -1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 105.0036 0.0000 1.0000 0.0000 11.176	900212_ProbeTWall.mat defines the relative position of where the burr axis touches the jig wall relative the the Probe origin
900212_ProbeTTip.mat 1.0000 0.0000 0.0000 0.0000 1.0000 0.0000 288.6583	900212_ProbeTTip.mat defines the center of the 1 mm sphere at the end of the probe relative to the Probe origin
0.0000 0.0000 1.0000 8.07974 Figure: Transformations wit	200 - 1000. N

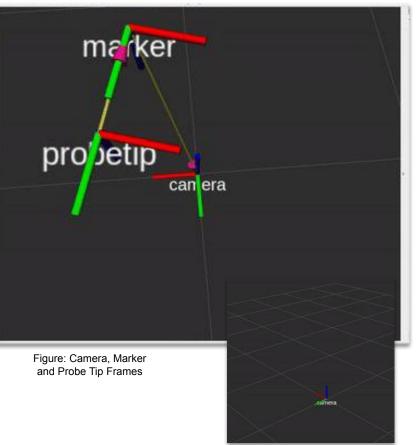


Figure: Previously

New Pointcloud Acquired Using Registration Probe

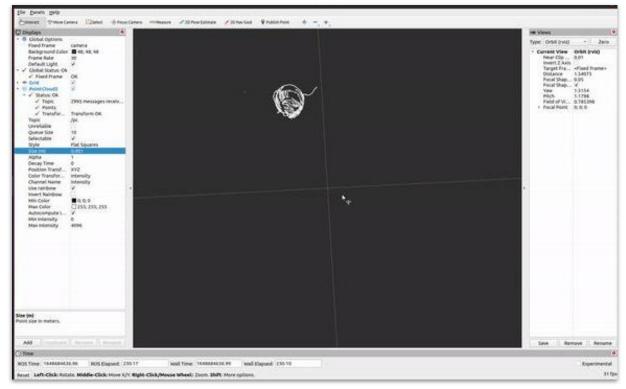
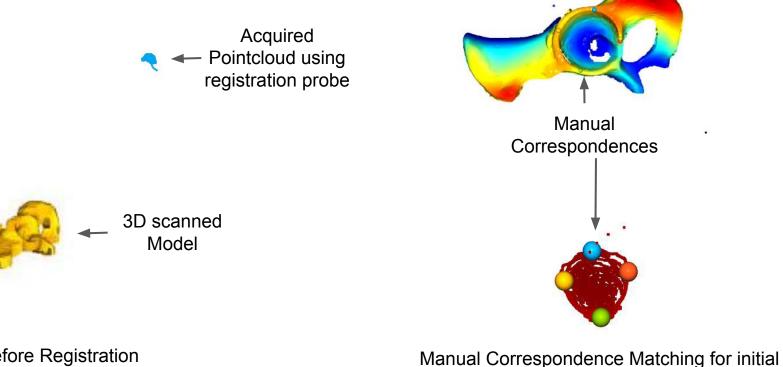
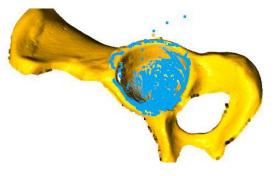



Figure: Pelvis Pointcloud Collection

Test 4: Evaluation of ICP using Real Pointcloud



guess

Before Registration

Test 4: Evaluation of ICP using Real Pointcloud

Registration Result

Transforamtion is : [[9.39464344e-01 -2.50722367e-01 -2.33548798e-01 -1.56972721e+02]
[-3.42032678e-01 -7.26981768e-01 -5.95408394e-01 -3.63044569e+02]
[-2.05035161e-02 6.39246277e-01 -7.68728693e-01 1.14271478e+02]
[0.0000000e+00 0.0000000e+00 0.0000000e+00 1.0000000e+00]]
Evaluation: registration::RegistrationResult with fitness=2.292607e-04, inlier rmse=7.093910e-02, and correspondence set size of 13
Access transformation to get result.

Registration RMSE Evaluation

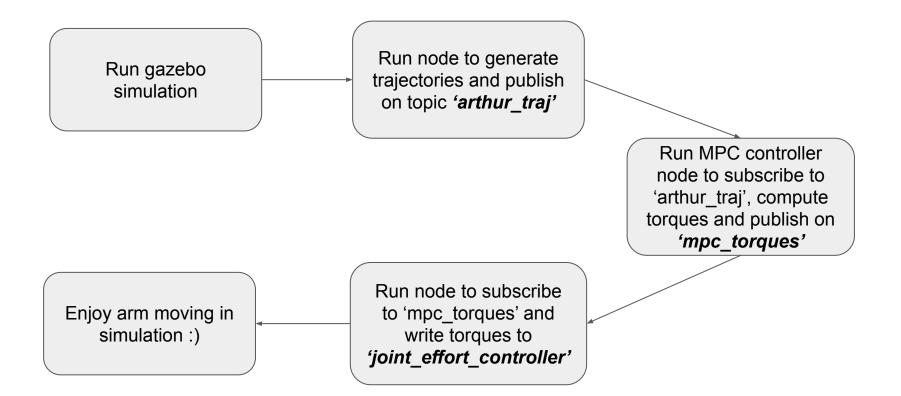
Test 14: Adding Additional States in Trajectory

→ Created custom message type

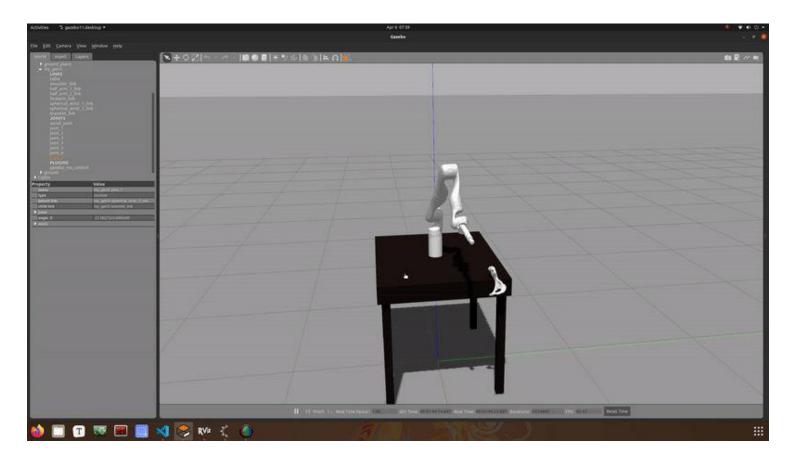
- Message sending trajectory information: Joint positions, joint velocities, joint accelerations, cartesian positions, cartesian velocity
- Computed end-effector position using Forward Kinematics
- → Wrote a class with functions to get current joint states, publish trajectories for modularities

oem@sas:~\$ rosmsg info arthur planning/arthur traj trajectory msgs/JointTrajectory traj std msgs/Header header uint32 seq time stamp string frame id string[] joint names trajectory_msgs/JointTrajectoryPoint[] points float64[] positions float64[] velocities float64[] accelerations float64[] effort duration time from start geometry msgs/PoseArray cartesian states std msgs/Header header uint32 seq time stamp string frame id geometry msqs/Pose[] poses geometry msgs/Point position float64 x float64 v float64 z geometry msgs/Quaternion orientation float64 x float64 v float64 z float64 w geometry msgs/Point[] cartesian vel float64 x float64 y float64 z

Test 14: MPC


Goal:

- Integrate MPC into Gazebo
 Simulation
- Test MPC in real-time simulation
- ✓ Add additional states to MPC


Current progress:

- Integrate MPC into Gazebo
 Simulation
- Tracking PD Impedance
 Controller is implemented in real-time Gazebo simulation
- Test MPC in real-time Gazebo simulation (still work inprogress)

Test 14: Planning & Controls Integration

Test 14: Tracking PD Impedance Controller

Planning & Controls Challenges

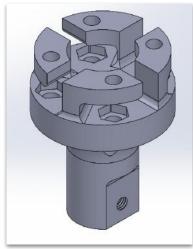
Challenges:

- → Building a custom message and populating it with all necessary states
- → Pilz linear planner takes a lot of time to generate trajectory, which will break the dynamic motion planning
- → Altro solver takes too long to converge, slowing down controller response in real-time
 - Algorithm for calculating dynamics is not fast enough (may need to swap to C++ libraries in the future)
- → Dynamics model mismatch between MPC algorithm and Gazebo simulation

Test 16: Hardware Setup

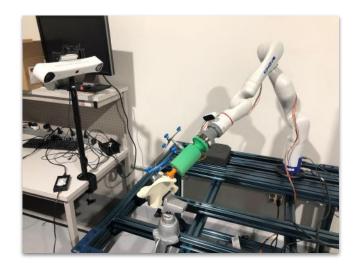
Goal: To finalize the hardware setup such that that arm is fully capable of reaming the acetebulum when properly controlled

Approach: 3D print adapters for the reamer head and motor to attach to the end-effector and develop a custom PCB to control it


	Hardware Setup Test
	Objective
rigidly secured	lized hardware setup in order to determine that all hardware is and functioning properly during motions that the manipulator would pical reaming operations
Equipment	System with Hipster Test Environment (MRSD Desktop 2), Robot Manipulator (with attached reamer end-effector), Marker Arrays, IR Markers, Atrascys camera, Sawbone pelvis, Panavise mount
Elements	Full Hardware System
Personnel	Parker Hill
Location	NSH Basement
	Procedure
in place 3. Attach mark 4. Place the At and pelvis mar 5. Actuate the path to what w 6. After placing	avise mount to the manipulator table and clamp the sawbone pelvis er array to the reamer assembly as well as to the pelvis tracsys camera in an orientation to be able to view both the reamer
1	Validation
moves around	is secured properly and does not have any play as the manipulator

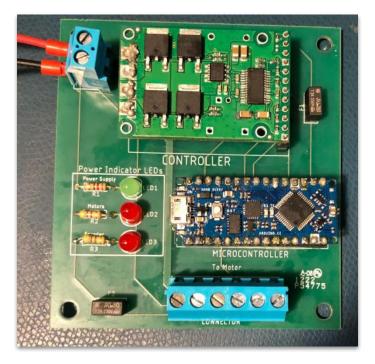
Test 16: End-Effector Redesign

- Previous design was validated to be capable of actuating the reaming head
- This design remained too long and not rigid enough for our purposes (although the addition of a flex coupling did improve it's rigidity)
- New end-effector design was created which mimics the geometry of the reaming handle without any unnecessary length
- Custom reaming head adapter was created and the motor holder was reprinted to include a marker holder



Test 16: Hardware Setup

- Testing of finalized prints showed that the redesign yielded a more stable end-effector
- Preliminary reaming tests on a cardboard box showed large reverse torques which the robot's joints would have to adapt to, however the design held up
- Despite this we would like to manufacture the reaming head adapter out of aluminum in the future



Test 16: PCB Finalization

- PCB was put together successfully and connectivity was tested throughout the board to verify performance
- However, when doing a second pass and fixing some sloppy solders something changed in the motor controller
 - The PWMH pin which should be held at LOW by default was oscillating between 1 and 3 V
 - This led the arduino getting fried and the motor controller becoming unreliable

Test 16: PCB Finalization

- Replacement motor controllers have been ordered
- Replacement arduinos have been brought in from home in case there is further issues with the board
- Motor wires have been extended and routed along the arm
 - Will be improved in the future with better routing and wires held tighter together
- Ideally the board should be resoldered and functional early next week.

Plans: Spring Validation Demonstration

Future Work - Perception

- Integrate multiple-marker tracking into current code
- Standardize point-cloud collection and correspondence-matching procedure
- Integrate registration and point-cloud collection sub-systems
- Error detection pipeline

Future Work - Planning & Controls

- Port planning node from python to C++ to reduce planning latency
- Incorporate transforms from perception subsystem to plan trajectory
- Write scripts to plan new trajectory when error threshold is crossed
- Continue tuning MPC to make it more robust
- Improve communication frequency between various subsystems

Hardware Future Work

- Finalize PCB
- Develop arduino code to control reamer speed using PID velocity control
- Mount power supply and PCB to Vention table
- Reroute wires along arm
- Determine transformation between marker on arm to last link

Thank you!