

Autonomous Reaming for Total Hip Replacement (ARTHUR)

Preliminary Design Review

Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

March 16th, 2022

Contents

- 1. The Team
- 2. Project description
- 3. Use case/System graphical representation
- 4. System-level requirements
- 5. Functional architecture
- 6. Cyberphysical architecture
- 7. Subsystem descriptions
- 8. Current system status
- 9. Project management

Meet the Team

Kaushik Balasundar

Perception and Sensing Lead

Parker Hill

Mechanical Systems Engineering Lead

Anthony Kyu

Controls and Actuation Lead

Gunjan Sethi

Software Engineering Lead

Sundaram Seivur

Trajectory Planning Lead

Project Description

Hipster 2021 © All Rights Reserved

Project Description

A doctor may recommend hip replacement if there exists significant *pain*, *inflammation* and *damage to the hip joint* due to conditions such as:

- Osteoarthritis (most common)
- Rheumatoid arthritis
- Osteonecrosis (avascular necrosis)
- Injury such as hip fracture
- Tumor in the hip joint

Total Hip Arthroplasty Overview

Factors and Barriers of Success

Steps in Total Hip Replacement:

- Reaming the acetabulum
- Cutting and drilling into the femur
- Impacting the acetabular cup into the acetabulum
- Impacting the femoral implant into the femur

Femoral Stem and Acetabular Component Placement [1]

Barriers

- Surgeons cannot see site of surgery very well
 - < 50% of manual surgeries are within the Lewinnek safe zone
- Modern systems lower this barrier but at the cost of surgical time and robustness

Femoral Stem and Acetabular Component Construction [4]

Success Criteria

- Accuracy of acetabular cup position and orientation
- Accuracy of Femoral Implant
- Surgical Time

Our Solution: **ARTHUR** (Autonomous Reaming for Total Hip Replacement)

A *fully autonomous robotic arm* aimed at performing acetabular reaming with *high accuracy*, eliminating the need of surgeons to use intuition to *correctly position/angle the reamer*.

Use Case

Hipster 2021 © All Rights Reserved

Use Case

Use Case Flow

Use Case

Use Case visualization and environment mockup

Hipster 2021 © All Rights Reserved

Requirements

Mandatory Performance Requirements

The System Will:

M.P.1.1 Localize the robot arm with a latency less than or equal to 50 ms

M.P.1.2.1 Localize the robot arm with respect to the pelvis with a position error of less than 1 mm

M.P.1.2.2 Localize the robot arm with respect to the pelvis with an orientation error less than 1.5 deg

M.P.2 **Plan** the trajectory based on the given surgical plan with a **latency less than or equal to 150 ms**

M.P.3.1 **Execute** surgical plan by reaming along the trajectory with an **position error of less than 1 mm**

M.P.3.2 **Execute** surgical plan by reaming along the trajectory with an **orientation error of less than 1.5-degrees**

M.P.4.1 **Compute** error and interpret the movement of the pelvis with a **latency less than or equal to 50 ms**

M.P.4.2 Generate a new trajectory if the errors are greater than 1 mm or greater than 1.5-degrees

M.P.5 Adapt and compensate for movement by generating a new trajectory with latency less than or equal to 150 ms

M.P.6 Allow the surgeon to place the robot arm to an initial position by back-driving the robotic arm

M.P.7 **Provide** the surgeon with **visual feedback** with a **latency less than or equal to 150 ms**

M.P.8 Allow the surgeon to **e-stop** the system, stopping the system within 500 ms

Mandatory Non-Functional Requirements

The System Will:

- M.N.1 Produce forces low enough for it to be safe around humans
- M.N.2 Provide a minimal and easy-to-interpret user interface design for surgeons
- M.N.3 Autonomously detect malfunctions and errors and notify user accordingly

Functional Architecture

Functional Architecture

Cyberphysical Architecture

Cyberphysical Architecture

Subsystem Descriptions

Major Subsystems

Sensing & Perception

Hardware & Actuation

Planning & Controls

Planning and Controls

Planning and Controls

Modifications:

- Not using CHOMP
- Using Model Predictive Control
- Gravity Compensation built into Kinova
 Gen 3 Arm

Model Predictive Control: Current Progress

Free Motion Mode (FMM)

Example of Gravity Compensation in FMM

Hipster 2021 © All Rights Reserved

Using ROS for Planning & Control

EROS

Movelt! Dependencies

Motion Planning: Current Progress

Motion planning using Movelt! and IKFast solver

Perception and Sensing

Input, Sensing, and Perception

Marker Tracking: Current Progress

Camera Setup

Robot Arm Moving the Marker Probe for Test

Marker Tracking Using Atracsys SDK

Marker Tracking Using ROS

Registration: Current Progress

Marker (left) Usage of Marker on Registration Probe (right)

Point Collection on Commercial System

3D scan from Konica Minolta Vivid 9i

Hardware and Actuation

Subsystem Description: Hardware and Actuation

Reamer and Kinova Gen-3

Surgical Reamer

Kinova Gen-3 Robot Arm

Current Progress: Kinova Gen-3

Kinova Gen-3 Working

Current Progress: Pelvis Screw Mount and Reaming Handle

Pelvis Screw Mount

Reaming Handle

H

Current Progress: End-Effector Adapter

Clamping 3D-Print Prototype

Hipster 2021 © All Rights Reserved

Current Progress: End-Effector Adapter

ServoCity Motor

End-Effector Adapter

Current Progress: End-Effector Adapter

Full End-Effector Assembly

Hipster 2021 © All Rights Reserved

Current Progress: Motor-Control PCB

Pololu Motor Driver, Power Supply, Arduino Nano

PCB Schematic

Current Progress: Completed Setup

Surgeon I/O

Surgeon I/O and Visualization

IGSTK Visualization Screen

RViz Visualization Screen [8]

+

Project Management

Work-Breakdown Structure

Schedule

High-Level Test Plan: Progress Reviews

Identifier	Capability Milestone(s)	Associated Tests	System Requirements
Progress Review 3 3/23/2022	Probe is able to be used to create a point cloud which can be visualized Control method is capable of being used with robot manipulator virtually Waypoint and trajectory generation working in ROS Hardware verified for use in reamer assembly	Test 5 Test 11 Test 13 Test 17	M.F.1 M.F.2
Progress Review 4 4/6/2022	Probe is able to create a point cloud which is comparable to the pelvis geometry Waypoint generation compensation is implemented virtually Control method is capable of being used with robot manipulator physically Robot manipulator end-effector and setup is fully assembly	Test 6 Test 12 Test 14 Test 16	M.F.1 M.F.2 M.F.3 M.F.5 M.N.1
Progress Review 5 4/20/2022	Probe is able to create a point cloud which is sufficient for use in generating waypoints according to surgical plan Control method and motion planning fully integrated Detect all movement of the pelvis Manipulator able to be maneuvered in free motion mode	Test 8 Test 9 Test 10 Test 15	M.F.1 M.F.2 M.F.3 M.F.4 M.F.6

High-Level Test Plan: Fall Semester Plan [Tentative]

Month	Capability Milestone	Validation Metrics		
August	Free Motion Mode	Personnel can move robot arm around freely		
September	Perception + Planning Subsystem Integration	Robot can determine its pose with respect to the pelvis within 50ms, within a pose and orientation error of 1mm and 1.5 degrees respectively		
	Dynamic Compensation	This latency in computing error must be within 50ms and must generate a new plan within 150m		
October	Perception + Planning + Controls Subsystem Integration	The trajectory must be followed within the defined root mean square error threshold.		
	E-Stop	Must stop the system within 500 ms		
November	Full System Integration + Test	 Run the procedure start script. Record the latency of the initial pose localization. Record the time taken for the motion plan to be generated Robot follows the trajectory. Run Quantitative Trajectory Evaluator 		
	Surgeon I/O	Latency within 150 ms		

-	Tes		Plan Tranformation Test	
		Surgical Pla	n Transformation Test	
			Objective	
			ivert a surgical plan specified in thepelvis e taken as input	
Equipment	Atracys Pelvis	Sprytrack 30	00 Camera, Markers, MRSD System 2, Model	
Elements	Percep	tion Subsyste	HTS .	
Personnel	Gunjar	(Test 9 :	- 6
Location	NSH B		Pelvis Motion Detection Test	
			Objective	
 Use the reg of view of the 			hat perception subsystem is capable of processing data to be pelvin has moved past a specified error threshold	0
 Specify the petvis market 	pase of th	Atracys Sprytrack 300 Camera, Markers, MRSD System 2, Education Sawbone Petvis		
3. Run ROS s	Contraction of the second	Brancatte Perception Subsystem		
	competite and	Personnel	Gurijan Sethi & Kaushik Balasundar	
		Location	NSH Basement	
			Procedure	
 The ROS so by the Sprytra orientation co 	ck camera	2 Specify the 3. Manually m	eivis in the field of vision of the camera. surgical plan as a ED pole and convert to world coordinate ove/litt petvis beyond the specified error threshold while the pelvis marker remains the camera field of vision.	L
			Validation	
			npt must detect and notify user on change in pelvis position It is exceeded with a latency of <500ms.	Ë.

Test 10:

Motion Planning and Controls Integration Test

Objective

o integrate the planning and control subsystems such that the end effector follows he trajectory generated without exceeding the force threshold

Equipment	MRSD :	Test 16 :					
Elements	Plannin	Free Motion Mode Test					
Personnel	Sundara	L	Objective				
Location	NSH Ba	To test the ability of the manipulator to allow the an external agent to move th end effector freely, moving the arm without gravitational resistance, and without the controller trying to hold a single position					
1. Move end-effetor close 2. Call node to generate		Equipment	Robotic Manipulator, Force/Torque Sensor, System with Hipster Test Environment (MRSD Desktop 2)				
point. 3. Call control	mode to m	Elements	Controls & Actuation Subsystem, State Machine Design				
 Call control node to million Measure and analyze 		Personnel	Personnel Anthony Kyu				
within stated e	error limits a	Location	NSH Basement				
		Procedure					
- Check visual - Read force-t stated limits							
		Validation					
		The robot end-effector moved with ease or without resistance (qualitatively), The robot arm didn't need gravitational assistance from the personnel (qualitatively), The joints of the arm moved in a predictable manner (qualitatively).					

	Objective				
	lity of the system to convert a surgical plan specified in thepelvis I coordinates that can be taken as input				
Equipment	Atracys Sprytrack 300 Camera, Markers, MRSD System 2, Mode Pelvis				
Elements	Perception Subsystem				
Personnel	ersonnel Gunjan Sethi & Kaushik Balasundar				
Location	NSH Basement				
-	Procedure				
of view of the 2. Specify the pelvis marker'	istration probe to slide through the acetabuluar surface in the field camera to register the pelvis acetabulum with the 3D model. pose of the acetabular implant (x,y,z,roll.pitch.yaw) to be at the s centroid. cript to transform to world frame coodinates with registration result				
	Validation				

orientation combined.

	Test 9 :		
6	Pelvis Motion Detection Test		
	Objective		
	hat perception subsystem is capable of processing data to e petvis has moved past a specified error threshold		
Atracys Sprytrack 300 Camera, Markers, MRSD System Equipment Sawbone Pelvis			
Elements	Perception Subsystem		
Personnel	Gunjan Sethi & Kaushik Balasundar		
Location	NSH Basement		
	Procedure		

1. Place the pelvis in the field of vision of the camera.

 Specify the surgical plan as a 6D pose and convert to world coordinates.
 Manually move/tilt pelvis beyond the specified error threshold while ensuring that the pelvis marker remains the camera field of vision.

Validation

 The ROS script must detect and notify user on change in pelvis position when threshold is exceeded with a latency of <500ms.

	Test 10:
-	Motion Planning and Controls Integration Test
	Objective
A CONTRACTOR OF A CONTRACT	e planning and control subsystems such that the end effector follows generated without exceeding the force threshold
Equipment	MRSD System 2, Robot Manipulator, Markers, Reaming tool
Elements	Planning & Controls
Personnel	Sundaram Selvur
Location	NSH Basement
	Procedure
2. Call node to point. 3. Call control 4. Measure an	effector close to the site of operation. If generate trajectory using Movelt between current point and end node to make the arm move along generated waypoints. If analyze if manipulator follows trajectory and reaches goal state error limits and not exceeding force limits.
	Validation
	ly and in simulation if arm starts following generated trajectory. orque sensor readings to validate that the applied forces are within the f <20N.

 Comparing the generated trajectory with the trajectory followed in reality using the RPG Trajectory Evaluation package to validate that the positional error is within 3mm.

Test 15 :

Free Motion Mode Test

Objective

To test the ability of the manipulator to allow the an external agent to move the end effector freely, moving the arm without gravitational resistance, and without the controller trying to hold a single position

Equipment	Robotic Manipulator, Force/Torque Sensor, System with Hipster Test Environment (MRSD Desktop 2)
Elements	Controls & Actuation Subsystem, State Machine Design
Personnel	Anthony Kyu
Location	NSH Basement
the second s	and the second se

Procedure

1. Set up Kinova Gen 3 in Free Motion Mode.

Have personnel push the end-effector in random directions within the workspace.

 Qualitatively assess whether the end-effector moves without resistance (except for possible arm momentum), and without the need for the personnel to provide gravitational assistance.

Validation

 The robot end-effector moved with ease or without resistance (qualitatively).
 The robot arm didn't need gravitational assistance from the personnel (qualitatively).

The joints of the arm moved in a predictable manner (qualitatively).

High-Level Test Plan: FVD

Test Number	Capability Milestone	ability Milestone Location Sequence of Events		Metrics	Performance Requirements	
1	Free Motion Mode	NSH Basement	1. Place pelvis onto the table 2. Power on the robot arm 3. Hold the end-effector and gently manouver it to bring it close to the pelvis.	Personnel can move robot arm around freely	M.P.6.	
8	Subsystem Integration		1. Run the procedure start script. 2. Record the latency of the initial pose localization.		MP11 MP121 MP122 MP42	
2	(Percpetion + Planning + Controls)		3. Record the time taken for the motion plan to be generated	The latency must be within 150ms.	M.P.2	
			 Robot follows the trajectory. Run Quantitative Trajectory Evaluator 	The trajectory must be followed within the defined root mean square error threshold.	M.P.3.1 M.P.3.2	
3 Dynamic Compensation		NSH Basement	1. As a continuation to Test 2, move the pelvis' position and orientation from its initial pose 2. Record the latency of the robot indicating an error value between the two points and generating a new plan.	This latency in computing error must be within 50ms and must generate a new plan within 150ms.	MP4.1 MP5	
a	4 Surgeon VO		 Start the surgeon I/O during each test. The robot and the pelvis, in their current states, must be visible on the surgeon I/O 	Latency within 150 ms	M.P.7.	
5 E-Stop NSH Besement		1. Run the procedure start script. 2. Press the e-stop button mid-execution	Must stop the system within 500 ms	M.P.8.		

Budget

Total Budget		5	000							
Total Spent		369	91							
Balance		4630	07							
Sr. No		Owner		Description	Month		Amount	Tax	Delivery	Total
	1	Sundaram		Hemi Pelvis 48mm - Solid foam	Nov	. *	-40	4.805	9.3	54.105
	2	Sundaram		Hemi Pelvis 56mm with vise attachment - Solid foam	Nov		40	4.805	9.3	54.105
	3	Sundaram	+	Monitor Desk Mount Vesa	Nov		40	2.4	0	42.4
	4	Sundaram		Panavise Mount for holding sawbones	Nov	*	90	6.3	0	96.3
	5	Gurijan		LENTION USB-C Multi-Port Hub with 4K HDMI Output, 4 USB 3.0, Type C Charging Compatible 2021-2016 MacBook Pro, New Mac Air & Surface, Chromebook, More, Stable Driver Adapter (CB-C35, Space Gray)	Jan		35.99	2.16	0	38.15
	6	Sundaram	+	Dry-erase markers	March		6.92			6.92
	7	Parker		Servocity Planetary Gear Motor	March		59.99			59.99
	8	Parker		HD Premium Planetary Gear Motor Mount, Face Tapped	March	+	4.99			4.99
	9	Parker	*	6mm to 8mm Flexible Clamping Shaft Coupler	March		5.99			5.99
1	10	Parker		6mm to 0.250" Flexible Clamping Shaft Coupler	March		5.99			5.99
1	11	Parker		PH Series JST 6-pin connector (2mm Pitch)	March		0.99			0.99

Total Budget	Total Spent	Balance
\$5000	\$369.93	\$4630.07

Risk Management

Risk #	Risk	Туре	Likelihood #	Consequence #	Risk Mitigation Action
3	Robot arm does not arrive on time	Schedule	2	4	 Follow-up with sponsor to get robot arm ordered as soon as possible Ptan project to focus on simulation early
2	Robot arm breaks	Technical	2	5	 Implement code on robot arm only after it has proven safe in simulation Store robot arm in safe environment Talk with other professors to see if we could use their robot arms as a backup
3	ROS simulation does not match up to reality	Technical	4	2	 Schedule project to include time to find and flx problems in transition from simulation Discuss differences in simulation and reality in end of sprint meetings
4	Too many requirements	Schedule	з	3	 Determine requirements that are necessary and that are desirable Individually check progress on requirements in end of sprint meetings
5	Performance requirements not met	Programmatic	4	4	Conduct research to re-evaluate quantification of performance requirements Revisit performance requirements every sprint meeting Have a project manager who checks our performance against requirements
6	Integration issues between subsystems	Technical	5	4	Define clear inputs and outputs of each subsystem in work breakdown structure Host end-of-sprint meetings Create documentation at the end of every sprint
7	Camera hardware fails	Technical	2	4	Store camera in a safe location Design pipeline for the use of the camera Ask sponsor for a backup camera to use in an emergency Find another camera online to order in case of emergency
8	ROS and IGSTK data conversion difficulties	Technical	4	2	Schedule project to have enough time to determine and fix potential problems Research data types needed for ROS and IGSTK visualization
9	Team member has difficulties working on their part of the project	Programmatic	5	2	Schedule primary and secondary roles, so all work tasks have two owners Have time during end-of-sprint meetings to communicate issues
10	Development Environment Incompatibility		5	1	Use Docker so that everyone's ROS environment is set up the same Train on ROS and Docker during the winter break
11	Unable to access workspace	Programmatic	1	5	Set up simulation environment on everyone's personal computer Decuss with sponsor potential back-up workspace

*Red indicates biggest risks

Risk Management

Risk #	Risk	Туре	
1	Robot arm does not arrive on time	Schedule	
2	Robot arm breaks	Technical	
3	ROS simulation does not match up to reality	Technical	
4	Too many requirements	Schedule	
5	Performance requirements not met	Programmatic	
6	Integration issues between subsystems	Technical	
7	Camera hardware faits	Technical	
8	ROS and IGSTK data conversion difficulties	Technical	
9	Team member has difficulties working on their part of the project	Programmatic	
10	Development Environment Incompatibility	Technical	
11	Unable to access workspace	Programmatic	

p	5	#10	#9	_		
	4		#3, #8		#5	#6
Likelihood	3			#4		
LK	2				#1, #7	#2
	1					#11
		1	2	3	4	5
				Conse	quence	

Risk Managem

Risk #	Risk	
1	Robot arm does not an	
2	Robot arm breaks	
3	ROS simulation does i reality	
4	Too many requirements	
5	Performance requirement	
6	Integration issues betw subsystems	
7	Camera hardware fails	
8	ROS and IGSTK data conversion difficulties	
9	Team member has difficulties working on their part of the project	Progra.
	Development Environment Incompatibility	Technical
10		T Brown House

Hipsu

Jerved

#10 #5 #6 #4 #1, #7 #2 #11 4 sequence

5

Risk Management

Risk#	Risk	Туре
1	Robot arm does not arrive on time	Schedule
2	Robot arm breaks	Technical
3	ROS simulation does not match up to reality	Technical
4	Too many requirements	Schedule
5	Performance requirements not met	Programmatio
6	Integration issues between subsystems	Technical
. 7	Camera hardware faits	Technical
8	ROS and IGSTK data conversion difficulties	Technical
9	Team member has difficulties working on their part of the project	Programmatic
10	Development Environment Incompatibility	Technical
11	Unable to access workspace	Programmatic

pc	5	#10	#9	_		
	4		#3, #8		#5	#6
Likelihood	3			#4		
LIK	2				#1, #7	#2
	1					#11
		1	2	3	4	5
				Conse	quence	

Thank You! Questions?

References

- [1] https://youtu.be/Hd5ywP61u7U
- [2] https://www.jrheum.org/content/early/2019/04/09/jrheum.170990
- [3] https://www.webmd.com/arthritis/news/20150212/number-of-hip-replacements-has-skyrocketed-us-report-shows
- [4] https://orthoinfo.aaos.org/globalassets/figures/a00377f03.jpg
- [5] https://izimed.com/products/disposable-passive-blunt-probe
- [6] https://www.smith-nephew.com/professional/products/robotics/cori-surgical-system/
- [7] https://www.atracsys-measurement.com/products/sprytrack-180/
- [8] http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/quickstart_in_rviz/quickstart_in_rviz_tutorial.html
- [9]https://image.made-in-china.com/44f3j00RiIaYvyMbbuA/Surgical-Instrument-Total-Hip-Arthroplasty-Reamer-Instrument-
- Orthopedics-Benders-Hemispherical.jpg
- [10] https://www.kinovarobotics.com/en/products/gen3-robot
- [11] https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSRkP-4RnluxrsIIbzc12au9ye9xYus46PR2w&usqp=CAU

Functional Requirement	Performance Requirement	Justification
M.F.1 The system shall localize the robot arm in real-time with respect to the pelvis before and during surgery	M.P.1.1 The system will localize the robot arm in real-time with respect to the pelvis before and during surgery with a latency less than or equal to 50 ms	Latency of Atracsys Sprytrack 300 is less than 25ms; Processing time ~ 25ms
	M.P.1.2.1 The system will localize the robot arm in real-time with respect to the pelvis before and during surgery with a position error of less than 1 mm	Survey sent to surgeons and literature review suggest a desired position error of less than 2 mm. Combining M.P.1.2.1 and M.P.3.1 will result in a combined position error of less than 2 mm.
	M.P.1.2.2 The system will localize the robot arm in real-time with respect to the pelvis before and during surgery with an orientation error of less than 1.5-degrees	Survey sent to surgeons and literature review suggest a desired orientation error of less than 3-degrees. Combining M.P.1.2.2 and M.P.3.2 will result in a combined orientation error of less than 3-degrees.

Functional Requirement	Performance Requirement	Justification
M.F.2 The system shall plan the trajectory of the robot arm based on the given surgical plan	M.P.2 The system will plan the trajectory of the robot arm based on the given surgical plan with a latency less than or equal to 150 ms	Total latency of the system should be less than 500 ms.
M.F.3 The system shall execute surgical plan by reaming along the generated trajectory	M.P.3.1 The system will execute surgical plan by reaming along the generated trajectory with an position error of less than 1 mm	Survey sent to surgeons and literature review suggest a desired position error of less than 2 mm. Combining M.P.1.2.1 and M.P.3.1 will result in a combined position error of less than 2 mm.
	M.P.3.2 The system will execute surgical plan by reaming along the generated trajectory with an orientation error of less than 1.5-degrees	Survey sent to surgeons and literature review suggest a desired orientation error of less than 3-degrees. Combining M.P.1.2.2 and M.P.3.2 will result in a combined orientation error of less than 3-degrees.

Functional Requirement	Performance Requirement	Justification
M.F.4 The system shall compute error and interpret the movement of the pelvis during reaming	M.P.4.1 The system will compute error and interpret the movement of the pelvis during reaming with a latency less than or equal to 50 ms	Latency similar to localization
	M.P.4.2 The system will generate a new trajectory if the interpreted position and orientation errors are greater than 1 mm or greater than 1.5-degrees	The thresholds for compensating for these errors should be less than the desired errors (2 mm and 3-degrees).
M.F.5 The system shall adapt and compensate for movement by generating a new trajectory	M.P.5 The system will adapt and compensate for movement by generating a new trajectory with a latency less than or equal to 150 ms	Latency similar to trajectory planning

Functional Requirement	Performance Requirement	Justification
M.F.6 The system shall allow the surgeon to place the robot arm at an initial position	M.P.6 The system will allow the surgeon to place the robot arm to an initial position by back-driving the robotic arm	Reduce system complexity by keeping path to be planned short
M.F.7 The system shall provide the surgeon with visual feedback	M.P.7 The system will provide the surgeon with visual feedback with a latency less than or equal to 150 ms	From literature on telesurgery, latency >150 ms is found to be noticeable to surgeons, and degrades performance of surgeon-performed tasks
M.F.8 The system shall allow the surgeon to e-stop	M.P.8 The system will allow the surgeon to e-stop the system, stopping the system within 500 ms	Competitor systems have similar quantification

Back

Desired Functional & Performance Requirements

Functional Requirement	Performance Requirement	Justification
D.F.1 The system shall allow surgeon to change end-effector/tool	D.P.1 The system will allow surgeon to change end-effector/tool in 3 steps or less	During surgery, some surgeons would prefer to step up reamers sizes instead of using the final size. Allowing them to do this in 3 steps or will allow the surgeon to quickly and change tools during surgery.
D.F.2 The system shall position acetabular cup for surgeon to impact into reamed acetabulum	D.P.2 The system will position the acetabular cup for the surgeon to impact into reamed acetabulum with less than a 3-degree error.	According to surgeon surveys and literature review, 3-degree error is the maximum allowable error. Since the reaming determines positional error, positional error is not a concern for impaction.

Back

Mandatory & Desired Non-Functional Requirements

M.N.1 The system will produce forces low enough for it to be safe around humans

M.N.2 The system will provide a minimal and easy-to-interpret user interface design for surgeons

M.N.3 The system will autonomously detect malfunctions and errors and notify user accordingly

- D.N.1 The system will allow for numerous successful surgeries, without the need for servicing and calibration
- D.N.2 The system will have a cost comparable to similar systems on the market
- D.N.3 The system will adhere to all relevant ISO standards pertaining to medical robotic systems
- D.N.4 The system will be of a size and dimension that is ergonomic
- D.N.5 The system will be designed such that it can be serviced easily
- D.N.6 The system will be designed to be easily sterilizable or sterile in the sterile field

Back