

Autonomous **R**eaming for **T**otal **H**ip **R**eplacement **(ARTHuR)**

Preliminary Design Review

Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

March 16th, 2022

Contents

- 1. The Team
- 2. Project description
- 3. Use case/System graphical representation
- 4. System-level requirements
- 5. Functional architecture
- 6. Cyberphysical architecture
- 7. Subsystem descriptions
- 8. Current system status
- 9. Project management

Meet the Team

Perception and Sensing Lead

Parker Hill

Mechanical Systems Engineering Lead

Anthony Kyu

Controls and Actuation Lead

Gunjan Sethi

Software Engineering Lead

Sundaram Seivur

Trajectory Planning Lead

Project Description

Hipster 2021 © All Rights Reserved

Project Description

A doctor may recommend hip replacement if there exists significant *pain*, *inflammation* and *damage to the hip joint* due to conditions such as:

- Osteoarthritis (most common)
- Rheumatoid arthritis
- Osteonecrosis (avascular necrosis)
- Injury such as hip fracture
- Tumor in the hip joint Tumor in the hip joint

Factors and Barriers of Success

Steps in Total Hip Replacement:

- *Reaming the acetabulum*
- Cutting and drilling into the femur
- Impacting the acetabular cup into the acetabulum
- Impacting the femoral implant into the femur

Femoral Stem and Acetabular Component Placement [1]

Barriers

- Surgeons cannot see site of surgery very well
	- *< 50%* of manual surgeries are within the Lewinnek safe zone
- Modern systems lower this barrier but at the cost of surgical time and robustness

Femoral Stem and Acetabular Component Construction [4]

Success Criteria

- **Accuracy of acetabular cup position and orientation**
- Accuracy of Femoral Implant
- Surgical Time

Our Solution: **ARTHuR** (**A**utonomous **R**eaming for **T**otal **H**ip **R**eplacement)

A *fully autonomous robotic arm* aimed at performing acetabular reaming with *high accuracy*, eliminating the need of surgeons to use intuition to *correctly position/angle the reamer*.

Use Case

Use Case

Use Case Flow

Use Case

Use Case visualization and environment mockup

Requirements

Mandatory Performance Requirements

The System Will:

M.P.1.1 **Localize** the robot arm with a **latency less than or equal to 50 ms**

M.P.1.2.1 **Localize** the robot arm with respect to the pelvis with a **position error of less than 1 mm**

M.P.1.2.2 **Localize** the robot arm with respect to the pelvis with an **orientation error less than 1.5 deg**

M.P.2 **Plan** the trajectory based on the given surgical plan with a **latency less than or equal to 150 ms**

M.P.3.1 **Execute** surgical plan by reaming along the trajectory with an **position error of less than 1 mm**

M.P.3.2 **Execute** surgical plan by reaming along the trajectory with an **orientation error of less than 1.5-degrees**

M.P.4.1 **Compute** error and interpret the movement of the pelvis with a **latency less than or equal to 50 ms**

M.P.4.2 **Generate** a new trajectory **if the errors are greater than 1 mm or greater than 1.5-degrees**

M.P.5 **Adapt and compensate** for movement by generating a new trajectory with **latency less than or equal to 150 ms**

M.P.6 **Allow** the surgeon **to place the robot arm** to an initial position by **back-driving the robotic arm**

M.P.7 **Provide** the surgeon with **visual feedback** with a **latency less than or equal to 150 ms**

M.P.8 **Allow** the surgeon to **e-stop** the system, stopping the system **within 500 ms**

Mandatory Non-Functional Requirements

The System Will:

- M.N.1 **Produce forces low enough** for it to be safe around humans
- M.N.2 **Provide** a minimal and easy-to-interpret **user interface** design for surgeons
- M.N.3 **Autonomously detect malfunctions** and errors and notify user accordingly

Functional Architecture

Functional Architecture

Cyberphysical Architecture

Cyberphysical Architecture

Subsystem Descriptions

Major Subsystems

Sensing & Perception Planning & Controls

Planning and Controls

Planning and Controls

Modifications:

- Not using CHOMP
- Using Model Predictive Control
- Gravity Compensation built into Kinova Gen 3 Arm

Model Predictive Control: Current Progress

Free Motion Mode (FMM)

Example of Gravity Compensation in FMM

Hipster 2021 © All Rights Reserved

Using ROS for Planning & Control

:::ROS

MoveIt! Dependencies

Motion Planning: Current Progress

Motion planning using MoveIt! and IKFast solver

Perception and Sensing

Input, Sensing, and Perception

Marker Tracking: Current Progress

Camera Setup

Robot Arm Moving the Marker Probe for Test Marker Tracking Using ROS

Marker Tracking Using Atracsys SDK

Registration: Current Progress

Marker (left) Usage of Marker on Registration Probe Point Collection on Commercial System (right)

3D scan from Konica Minolta Vivid 9i

Point-to-point distance cost function results after RANSAC refinement

Hardware and Actuation

Subsystem Description: Hardware and Actuation

Work Environment Mock-up

Reamer and Kinova Gen-3

Surgical Reamer **Kinova Gen-3 Robot Arm Kinova Gen-3 Robot Arm**

Current Progress: Kinova Gen-3

Kinova Gen-3 Working

Current Progress: Pelvis Screw Mount and Reaming Handle

Pelvis Screw Mount

Reaming Handle

Current Progress: End-Effector Adapter

Clamping 3D-Print Prototype

Current Progress: End-Effector Adapter

ServoCity Motor

End-Effector Adapter

Current Progress: End-Effector Adapter

Full End-Effector Assembly

Hipster 2021 © All Rights Reserved

Current Progress: Motor-Control PCB

last distance and discussivities does than

PCB Schematic **PCB Schematic** POLOU Pololu Motor Driver, Power Supply, Arduino Nano

Current Progress: Completed Setup

Surgeon I/O

Surgeon I/O and Visualization

IGSTK Visualization Screen **Internation Screen** EXT Controller RVIZ Visualization Screen [8]

+

Project Management

Work-Breakdown Structure

Schedule

High-Level Test Plan: Progress Reviews

High-Level Test Plan: Fall Semester Plan [Tentative]

Test 10:

Motion Planning and Controls Integration Test

Objective

To integrate the planning and control subsystems such that the end effector follows. the trajectory generated without exceeding the force threshold

orientation combined.

1. Place the pelvis in the field of vision of the camera.

2. Specify the surgical plan as a 6D pose and convert to world coordinates. 3. Manually move/tilt pelvis beyond the specified error threshold while ensuring that the pelvis marker remains the camera field of vision.

Validation

- The ROS script must detect and notify user on change in pelvis position when threshold is exceeded with a latency of <500ms.

- Comparing the generated trajectory with the trajectory followed in reality using the RPG Trajectory Evaluation package to validate that the positional error is within 3mm.

Test 15:

Free Motion Mode Test

Objective

To test the ability of the manipulator to allow the an external agent to move the end effector freely, moving the arm without gravitational resistance, and without the controller trying to hold a single position

Procedure

1. Set up Kinova Gen 3 in Free Motion Mode.

2. Have personnel push the end-effector in random directions within the workspace.

3. Qualitatively assess whether the end-effector moves without resistance (except for possible arm momentum), and without the need for the personnel to provide gravitational assistance.

Validation

- The robot end-effector moved with ease or without resistance (qualitatively). - The robot arm didn't need gravitational assistance from the personnel (qualitatively).

- The joints of the arm moved in a predictable manner (qualitatively).

High-Level Test Plan: FVD

Budget

Risk Management

*Red indicates biggest risks

Risk Management

Risk Managem

Hipster 2021 Contract 2021

#10

#5 #6 $#4$ $#2$ $#1, #7$ $#11$ $\overline{5}$ 4 sequence

CH.

Risk Management

Questions? Thank You!

References

- [1] <https://youtu.be/Hd5ywP61u7U>
- [2] <https://www.jrheum.org/content/early/2019/04/09/jrheum.170990>
- [3] <https://www.webmd.com/arthritis/news/20150212/number-of-hip-replacements-has-skyrocketed-us-report-shows>
- [4] <https://orthoinfo.aaos.org/globalassets/figures/a00377f03.jpg>
- [5] <https://izimed.com/products/disposable-passive-blunt-probe>
- [6] <https://www.smith-nephew.com/professional/products/robotics/cori-surgical-system/>
- [7] <https://www.atracsys-measurement.com/products/sprytrack-180/>
- [8] http://docs.ros.org/en/melodic/api/moveit_tutorials/html/doc/quickstart_in_rviz/quickstart_in_rviz_tutorial.html
- [9][https://image.made-in-china.com/44f3j00RiIaYvyMbbuA/Surgical-Instrument-Total-Hip-Arthroplasty-Reamer-Instrument-](https://image.made-in-china.com/44f3j00RiIaYvyMbbuA/Surgical-Instrument-Total-Hip-Arthroplasty-Reamer-Instrument-Orthopedics-Benders-Hemispherical.jpg)
- [Orthopedics-Benders-Hemispherical.jpg](https://image.made-in-china.com/44f3j00RiIaYvyMbbuA/Surgical-Instrument-Total-Hip-Arthroplasty-Reamer-Instrument-Orthopedics-Benders-Hemispherical.jpg)
- [10] <https://www.kinovarobotics.com/en/products/gen3-robot>
- [11] <https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSRkP-4RnIuxrsIIbzc12au9ye9xYus46PR2w&usqp=CAU>

[Back](#page-11-0)

Desired Functional & Performance Requirements

[Back](#page-11-0)

Mandatory & Desired Non-Functional Requirements

M.N.1 **The system** *will* produce forces low enough for it to be safe around humans

M.N.2 **The system** *will* provide a minimal and easy-to-interpret user interface design for surgeons

M.N.3 **The system** *will* autonomously detect malfunctions and errors and notify user accordingly

D.N.1 **The system** *will* allow for numerous successful surgeries, without the need for servicing and calibration

D.N.2 **The system** *will* have a cost comparable to similar systems on the market

D.N.3 **The system** *will* adhere to all relevant ISO standards pertaining to medical robotic systems

D.N.4 **The system** *will* be of a size and dimension that is ergonomic

D.N.5 **The system** *will* be designed such that it can be serviced easily

D.N.6 **The system** *will* be designed to be easily sterilizable or sterile in the sterile field