
Individual Lab Report 3 - Progress Review 2
Autonomous Reaming for Total Hip Replacement

Anthony Kyu
Team C:

Kaushik Balasundar | Parker Hill | Anthony Kyu
Sundaram Seivur | Gunjan Sethi

March 3rd, 2022

Contents

1 Individual Progress 1

2 Challenges 3

3 Team Work 4
3.1 Anthony Kyu . 4
3.2 Parker Hill . 4
3.3 Sundaram Seivur . 4
3.4 Kaushik Balasundar . 4
3.5 Gunjan Sethi . 4

4 Plans 5

5 Appendix A: Currently Implemented Code for Model and Dynamics 6

6 Appendix B: Currently Implemented Code for Objective Function and Constraints 9

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

1 Individual Progress

Since the last progress review (Progress Review 1), I was responsible for iterating and com-
pleting the high-level control architecture, the optimal control problem (which includes defining
the objective/cost function, the dynamics of the system, and the constraints of the system), explore
and dive into different libraries to help implement the Model Predictive Controller (MPC), imple-
ment the MPC in simulation, and perform Test 13 (Test MPC for Force and Position Requirements
in Simulation) by the end of the progress review. Unfortunately, not all of these goals were met
because of challenges later discussed in this Independent Lab Report.

During the first week of this two week sprint, I spent time revising the optimal control problem
and receiving feedback from Professor Zachary Manchester (professor of Optimal Control and
Reinforcement Learning course) multiple times. Based on his feedback, the following high-level
controls block diagram was finalized (Figure 1). q and q̇ will be read from the joint encoders
(derive from these), FExternal will be read from the Force/Torque Sensor on the wrist, and X will be
read from the external Atracsys 300 camera. Furthermore, the following optimal control problem
was also finalized (Figure 2).

Figure 1: High-Level Control Block Diagram

Figure 2: The Optimal Control Problem in the MPC to Minimize

Page 1

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

After finalizing the optimal control problem, I started reading through the documentation of
the Julia libraries I planned on using to implement the MPC, which includes RigidBodyDynamics,
RobotDynamics, TrajectoryOptimization, and Altro. RigidBodyDynamics and RobotDynamics
were used to implement the model and dynamics of the system, TrajectoryOptimization will be
used set up the optimal control problem, and Altro will be used to solve the optimal control prob-
lem. While reading the documentation, I have also started implementing the model, dynamics, and
constraints for our MPC (See Appendix A and B).

Page 2

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

2 Challenges

The major challenge for this progress review was the uncertainty of not knowing what manip-
ulator we were using for our project. From the previous progress review, we originally thought
that we were going to use the UR5, but our sponsor decided that they wanted us to use a Kinova
Gen 3 (7 DOF) instead. We did not learn about this until 6 days before the progress review, setting
our plans back because we had to set up a new environment for simulation given the new arm,
forcing us to push Test 13 (Test MPC for Force and Position Requirements in Simulation) back
one progress review.

The other challenges during this progress review were from the scattered documentation of the
libraries I was using to implement our code. This drastically slowed down development as well.
In addition, some libraries had dependencies on older versions of other libraries, and making sure
those matched was another challenge.

The last major challenge was making sure our optimal control problem was compatible with
the libraries we were using. For example, the way the library wants us to implement constraints is
to use variables directly from the state or controls. Originally, the state did not include ẋ, but we
had to add it in and calculate the dynamics in order to implement the constraint on end-effector
velocity. This challenge caused us to iterate on our optimal control problem even more, increasing
development time.

Page 3

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

3 Team Work

3.1 Anthony Kyu

Anthony worked on formulating the optimal control problem for the Model-Predictive Con-
troller, creating several iterations of the optimal control problem and getting regular feedback from
Professor Manchester. He also explored a variety of libraries to use for the MPC controller and
for interfacing the controller (in Julia) with ROS. After that, he started implementing the MPC
controller, coding the dynamics function, the constraints and the objective function. He also col-
laborated with Parker on the Power Distribution Design PCB, discussing requirements and ideas
for the board, as well as researching some components for the board.

3.2 Parker Hill

Parker helped to set up the physical set-up for the Kinova Gen-3 arm which involved assem-
bling a Vention table, picking up the arm from our sponsor, and setting up the arm on the table. He
also designed and 3D printed prototypes for attaching the reamer handle to the end-effector. And
lastly, he worked on the Power Distribution Board assignment, creating the conceptual design as
well as the schematic of our motor control board.

3.3 Sundaram Seivur

Sundaram worked on formulating the optimal controls problem and collaborated with Anthony
in getting feedback from professors. He studied the functions used to interface the output of the
controls loop with ROS. He also worked on setting up the hardware which included getting the arm
from our sponsors, assembling the Vention table and mounting the Gen3 arm. Finally, he worked
with Kaushik to get a 3D of the model bone.

3.4 Kaushik Balasundar

Kaushik worked on implementing the iterative closest point registration algorithm and validat-
ing its efficacy in registering the points from the surface of the simulated acetabulum with the 3D
scanned model of the pelvis. He and Sundaram 3D scanned the pelvis model using laser scanning
equipment from Prof. Shimada’s lab. Once the arm was finalized by our sponsors, he set up the
simulation environment with the Kinova Gen-3 arm. He worked alongside Gunjan in publishing
the marker poses to ROS and broadcasting the pose as a TF transform to visualize on RViz. Finally,
he was our team’s presenter for the second progress review.

3.5 Gunjan Sethi

Gunjan re-calibrated the markers to improve the robustness of the ROS camera node. Further,
she added the marker pose detection and visualization features to the node and performed various
reliability tests to ensure smooth functioning during the progress review.

Page 4

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

4 Plans

For the next progress review, I plan to finish documenting the high-level design of the Optimal
Control Problem, and the design rationale. I then plan to finish implementing the Model Predictive
Controller, and set up the Gazebo environment to simulate the controller and test to see if it meets
the force constraints and positional accuracy required. This would not only require some intial
testing of the dyanmics model, but also integrating the MPC with ROS using RobotOS.jl library in
Julia, and implementing some force modeling plugins into Gazebo to test the MPC.

As a stretch goal, I plan to start integrating the MPC in reality on our real Kinova Gen 3
Manipulator, working towards future progress reviews.

Page 5

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

5 Appendix A: Currently Implemented Code for Model and Dynamics

Please note that the following code is currently being developed, and is not complete.

using RigidBodyDynamics
using StaticArrays
using Parameters
using RobotDynamics
using Rotations
using LinearAlgebra

Defining Arthur model using RigidBodyDynamics
struct Arthur{T} <: AbstractModel

mechanism::T
function Arthur(mechanism)

T = eltype(RigidBodyDynamics.Mechanism)
new{T}(mechanism)

end
end

Arthur(;
mechanism=RigidBodyDynamics.URDF.parse_urdf("/home/amkyu/catkin_workspace/src↪→

/ros_kortex/kortex_description/arms/gen3/7dof/urdf/GEN3_URDF_V12.urdf")) =
Arthur(mechanism)↪→

State, s, is [q q x x F]
x will be input from the camera
q, q, x will be taken or derived from the arm
F will be input from the F/T Sensor
Input, u, is Torque ()
function RobotDynamics.dynamics(model::Arthur, s, u)

Create a state of the mechanism model and a result struct for the
dynamics↪→

dynamicsResult = RigidBodyDynamics.DynamicsResult(model.mechanism)
mechanismState = RigidBodyDynamics.MechanismState(model.mechanism)

Get states and constants of system not dependent on model state
M = RigidBodyDynamics.mass_matrix(mechanismState)
num_q = RigidBodyDynamics.num_positions(model.mechanism)
q = s[1:num_q]
q = s[num_q+1:2*num_q]
x = s[2*num_q + 1:2*num_q + 6]
x = s[2*num_q + 7:2*num_q + 12]
F = s[2*num_q + 13:2*num_q + 18]
Be = zeros(6, 6)

Page 6

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

if (norm(x) > 1e-5)
for k = 1:3

Be[k,k] = norm(F) / norm(x)
end

end

Set mechanism state to current state
RigidBodyDynamics.set_configuration!(mechanismState, q)
RigidBodyDynamics.set_velocity!(mechanismState, q)

Get variables dependent on state
J = getJacobian(model, q, q)
_ext = transpose(J)*Be*x

Calculate dynamics
RigidBodyDynamics.dynamics!(dynamicsResult, mechanismState, u)
Add the effects of external forces/torques into dynamics
q = M\((M * dynamicsResult.v) - _ext)
x = getJ(model, J, q, q)*q + J*q
F = Be*x
return [q; q; x; F; 0; 0; 0; 0; 0; 0]

end

function getJacobian(model::Arthur, q, q)
mechanismState = RigidBodyDynamics.MechanismState(model.mechanism)
RigidBodyDynamics.set_configuration!(mechanismState, q)
RigidBodyDynamics.set_velocity!(mechanismState, q)
p = RigidBodyDynamics.path(model.mechanism,

RigidBodyDynamics.root_body(model.mechanism),
RigidBodyDynamics.bodies(model.mechanism)[end])

↪→

↪→

J_data = RigidBodyDynamics.geometric_jacobian(mechanismState, p)
return [J_data.linear; J_data.angular]

end

function getX(model::Arthur, J, q, q)
J = getJacobian(model, q, q)
x = J*q
return x

end

function getJ(model::Arthur, J, q, q)
return ForwardDiff.jacobian(dq -> getX(model, J, dq, q), q)

end

RobotDynamics.state_dim(::Arthur) = 32

Page 7

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

RobotDynamics.control_dim(::Arthur) = 7

Page 8

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

6 Appendix B: Currently Implemented Code for Objective Function and
Constraints

Please note that the following code is currently being developed, and is not complete.

include("Arthur.jl")
using RigidBodyDynamics
using StaticArrays
using RobotDynamics
using Rotations
using LinearAlgebra
using ForwardDiff, FiniteDiff
using Altro
using TrajectoryOptimization

model = Arthur()
n,m = size(model)

N = 61
tf = 3.
dt = tf/(N-1)

x0 = @SVector zeros(n)
xf = @SVector zeros(n); # i.e. swing up
#Traj = # Input from trajectory planner

Set up
Q = 1.0e-2*Diagonal(@SVector ones(n))
Qf = 100.0*Diagonal(@SVector ones(n))
R = 1.0e-1*Diagonal(@SVector ones(m))
obj = TrackingObjective(Q, R, Traj, Qf=Qf)
obj = LQRObjective(Q,R,Qf,xf,N);

Create Empty ConstraintList
conSet = ConstraintList(n,m,N)

Control Bounds based on Robot Specs (Joint torque limits)
u_bnd = [39.0, 39.0, 39.0, 39.0, 9.0, 9.0, 9.0]
control_bnd = BoundConstraint(n,m, u_min=-u_bnd, u_max=u_bnd)
add_constraint!(conSet, control_bnd, 1:N-1)

State Bounds based on Robot Specs (Joint velocity and speed limits)
x_bnd = zeros(26)
x_bnd[1:7] = [Inf, deg2rad(128.9), Inf, deg2rad(147.8), Inf, deg2rad(120.3),

Inf] # rad↪→

Page 9

MRSD 2022 Team C: Individual Lab Report 3 - Progress Review 2

x_bnd[8:14] = [1.39, 1.39, 1.39, 1.39, 1.22, 1.22, 1.22] # rad/sec
x_bnd[15:end] = [Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf, Inf]

Constraints on force elsewhere↪→

state_bnd = BoundConstraint(n,m, x_min=-x_bnd, x_max=x_bnd)
add_constraint!(conSet, state_bnd, 1:N)

Cartesian Velocity Bound
x_max = 0.0005 # m/s
vel_bnd = NormConstraint(n, m, x_max, Inequality(), 15:20)
add_constraint!(conSet, vel_bnd, 1:N)

Force Bound
F_max = 20 # Newtons
F_bnd = NormConstraint(n, m, F_max, Inequality(), 21:26)
add_constraint!(conSet, F_bnd, 1:N)

Goal Constraint - only if you want the final state to be the desired state
goal = GoalConstraint(xf)
add_constraint!(conSet, goal, N)

Page 10

	Individual Progress
	Challenges
	Team Work
	Anthony Kyu
	Parker Hill
	Sundaram Seivur
	Kaushik Balasundar
	Gunjan Sethi

	Plans
	Appendix A: Currently Implemented Code for Model and Dynamics
	Appendix B: Currently Implemented Code for Objective Function and Constraints

