April 27, 2022

HIPSTER

Spring Validation Demonstration -Encore

Autonomous Reaming for Total Hip Replacement (ARTHuR)

H The Team

Kaushik Balasundar

Perception and Sensing Lead

Mechanical Systems Engineering Lead

Anthony Kyu

Controls and Actuation Lead

Software Engineering Lead

Gunjan Sethi

Sundaram Seivur

Trajectory Planning Lead

Contents (what's changed)

- Use Case
- Project Overview
- Workspace
- Recorded Tests
 - Hand-Eye Calibration
- Live Tests
 - Free Motion Mode
 - Sparse Pointcloud Collection
 - Controls
 - Force feedback for Turning on Reamer
 - Dynamic Compensation
 - Reaming the Pelvis
- Discussions and Questions

H Use Case

01

02

Of the 100 manual surgeries, **30-45% of them observed the implant within the Lewinnek safe zone** and of the 100 robotic-assisted surgeries, **77% were within the safe zone.**

Study on the future projections on the number of total joint replacements in the US, show that up until 2040, we can expect an increase in the requirement of a THR for both sexes by approximately 280%.

Manual Reaming Demonstration

HIPSTER

Overview

A **fully autonomous** robotic arm aimed at performing acetabular reaming with **high accuracy**, eliminating the need of surgeons to use intuition to correctly position/angle the reamer.

H Improvements for Encore

Tests

• Hand-Eye Calibration (Recorded)

HIPSTER

- Free Motion Mode
- Pointcloud Collection
- Landmark Selection +
 - Registration
- Planning
- Controls
- Dynamic Compensation
- Reaming the Pelvis

Hand-Eye Calibration

 Objective: Find transformation between
/base_link (world) frame of robot and /camera frame **HIPSTER**

- Eye-on-base problem
- Marker used as calibration target
- Calibration done using OpenCV library's Tsai-Lenz algorithm implementation

Free-Motion Mode

Free motion mode will allow the surgeon to **move the end-effector to the patient's acetabulum** before executing the trajectory. The robot arm stays in place unless the surgeon moves it by hand.

Pointcloud Collection

Landmark Selection + Registration

H Latency & Error Detection

• Latency Test Procedure

- i. Clamp test model to Vention table.
- ii. Place a fiducial marker on the robot's end-effector.
- iii. Record the end-effector marker's pose from the camera.
- iv. Record time to get end-effector pose.

• Error Detection Test Procedure

- i. Place a marker in the initial slot on the test model. Record its pose.
- ii. Move the marker to the planar slot. Record its pose.
- iii. Move the marker to the slanted slot. Record its pose.
- iv. Record computed translation and orientation error for the new marker positions.

average	rate: 54.033	0.0205	stu	uev:	0.000975	WILLIOW:	2/9
	min: 0.010s max:	0.026s	std	dev:	0.00092s	window:	433
average	rate: 54.035						
	min: 0.010s max:	0.0265	std	dev:	0.00088s	window:	487
average	rate: 54.032						
	min: 0.010s max:	0.0265	std	dev:	0.00085s	window:	541
average	rate: 54.034						
	min: 0.010s max:	0.027s	std	dev:	0.00095s	window:	595
average	rate: 54.036						
	min: 0.010s max:	0.027s	std	dev:	0.00092s	window:	649

H Latency & Error Detection

Performance Requirement: Position Error <= 3mm Orientation Error <= 3 degrees Latency < 500 ms Current System Performance: Position Error <= 2mm Orientation Error <= 3 degrees Latency ~ 20 ms

Planning, Controls and Reaming (Encore)

HIPSTER

Dynamic Compensation

ARTHuR constantly checks for any movement of the patient above a certain threshold and re-plans the trajectory of reaming if that threshold were to be crossed.

Dynamic Compensation / SVD 20 April 2022

HIPSTER

Trajectory Evaluation

H

Test 1

	Req	Current
x	3mm	1.5mm
у	3mm	2.4mm
Z	3mm	1.8mm

H Trajectory Evaluation

Orientations threshold: 3 degrees (rpy)

Hardware Design

HIPSTER

H End-Effector Design

Updated Design:

- Shortened original design to increase robustness and accuracy
- Enclosed motor housing for increased sanitization

Parts Necessary for Design:

- Force-Torque sensor
- Motor which can run at 400 rpm while outputting 0.5 Nm of torque
- Fiducial marker mount for camera-base registration
- Reamer head
- Reamer head adapter
- Motor mount
- Force-Torque adapter

PCB Design

Functionality:

- Needed to be able to turn on and control the motor utilizing ROS
- Further, needed the motor to maintain a consistent rpm during the reaming operation

Parts:

• Pololu 1457 -> Cytron MD10C

H

- Arduino Nano
- Header Blocks
- Fuses
- LEDs
- Resistors
- Power Supply

HIPSTER

Changes for Fall Validation

Changes for Fall Validation

- Full **User Interface** which allows surgeons to easily interface with the system
- Full PCB redesign to integrate all components into one package
- Redesign to the **end-effector**:
 - Want to try different motor orientations (perpendicular orientation)
 - Potentially have stabilization rods
 - Machine out of aluminum or manufacture from plastics
- **Dynamic compensation** which occurs during the reaming operation (no replanning)
- Improved overall performance:
 - Reaming sawbones (closer bone approximate)
 - Faster planning
 - More accurate execution
- If time permits, implement **model predictive control** into our control system

HIPSTER

Thank You! See you next semester :)

Autonomous Reaming for Total Hip Replacement (ARTHuR)

