

Autonomous Reaming for Total Hip Replacement (ARTHUR)

Progress Review - 7

Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

September 7th, 2022

Progress Review #7 Goals

- Collect hardware from REDACTED
- Re-assemble system/workspace
- Re-evaluate requirements, risks, feedback, and system architectures
- Re-familiarization with system
- REDACTED kickoff meeting
- End-effector redesign brainstorming

Progress and Challenges

Re-assemble System

- Collected arm and camera from Smith & Nephew on August 31st
- Re-assembled system:
 - Attached camera back to VESA mount
 - Mounted Kinova onto table
 - Attached end-effector onto arm
 - Re-routed cables and wires throughout the system

Re-Evaluated Requirements

	•
•	•

Functional Requirement	Performance Requirement
M.F.1. The system shall use the Atracsys camera to	M.P.1.1. The system shall use the Atracsys camera to track the pelvis, registration probe, and robot arm markers with a <u>frame rate</u> greater than or equal to 50 Hz or <u>latency</u> less than or equal to 20 milliseconds .
markers.	M.P.1.2. The system shall use the Atracsys camera to track the pelvis, registration probe, and robot arm markers with an <u>accuracy</u> of less than or equal to 0.5 mm .
	M.P.2.1. The system shall continuously calculate the error in pelvis movement with a <u>frame rate</u> greater than or equal to 50 Hz or <u>latency</u> less than or equal to 20 milliseconds .
M.F.2. The system shall continuously calculate the error in pelvis movement.	M.P.2.2. The system shall use the Atracsys camera to track the pelvis, registration probe, and robot arm markers with a <u>positional accuracy</u> less than or equal to 2 mm .
	M.P.2.3. The system shall use the Atracsys camera to track the pelvis, registration probe, and robot arm markers with an <u>orientational accuracy</u> less than or equal to 1.5 degrees .
M.F.3. The system shall perform registration between the collected pointcloud and the given 3D pelvis scan.	M.P.3. The system shall perform registration between the collected pointcloud and the given 3D pelvis scan with a <u>root mean square (RMS) error</u> of 0.1 mm .
M.F.4. The system shall dynamically compensate for	M.P.4.1. The system shall dynamically compensate for the movement of the pelvis by retracting or powering off the reamer with a <u>latency</u> of less than or equal to 25 ms .
the movement of the pelvis.	M.P.4.2. The system shall dynamically compensate for the movement of the pelvis by realigning the reamer with a <u>latency</u> of less than or equal to 50 ms .
M.F.5. The system shall ream the pelvis based on the	M.P.5.1. The system shall ream the pelvis based on the provided surgical plan with a <u>positional accuracy</u> of 2 mm .
provided surgical plan.	M.P.5.2.The system shall ream the pelvis based on the provided surgical plan with an <u>orientational accuracy</u> of 1.5 degrees .
M.F.6. The system shall allow the surgeon to place the robot arm at an initial position	M.P.6. The system will allow the surgeon to place the robot arm in an initial position by back-driving the robotic arm
M.F.7. The system shall allow the surgeon to e-stop	M.P.7 The system will allow the surgeon to e-stop the system, stopping the system within a latency of 500 ms

New Risks

1	End effector development delays	Technical	4	4	 Start early and lock design by October 15th Brainstorm multiple solutions 3D print to test before final manufacturing Make system simple enough to get it manufactured in-house Use 3D printed design as a fallback
2	PCB failure & delays	Technical	4	4	 Test breadboard prototype Seek feedback from Luis Use off-the-shelf boards to reduce PCB complexity of PCB Order spares
3	Dynamic compensation not achievable	Technical	3	3	 Iterate with multiple control architectures Utilize earlier compensation solution as a fallback Evaluate need for isolating controller from ROS Benchmark latencies in system Use pub/sub communication instead of server/client communication
4	System robustness issues	Technical	4	3	 Create internal deadlines Start testing early (by Oct 31st) Fallback on the earlier working demo Allocate last two weeks for system optimization
5	Reamer does not ream rigid bone	Technical	3	2	Fallback on foam bonesOrder bones early for testing
6	UI does not integrate with system	Technical	4	2	 Start working on the UI early Plan architecture and consult each stakeholder Start testing by Oct 31st

Old Cyberphysical Architecture

Re-evaluated Cyberphysical Architecture

End-Effector Redesign Brainstorming

H

End-Effector Redesign Challenges

- Reaming shaft ideally is supported linearly and rotationally
 - Requires a linear and rotational bearing, over-constraining the system
 - Have to choose between linear and rotational support
 - Need linear support to move stage down, so no rotational bearings
- Length needs to be minimized
 - Motors need to be attached to minimize overall length of end-effector
- Need way to measure downward applied force

Haing Cell Reamer Motor Hatfarm Lead Scsow Motor Leadson
--

Watchdog Module

Goals

- Log all important inputs, outputs ar system metrics
- Prevent system from breaking dow control < to sub-system level errors

Value	Type of Logging	Description	am
Pelvis Pose Error Calculation	Terminal (just a message maybe?)	Error < threshold	am
Trigger DC	Filesystem (log pose + timestamp!)	Error > threshold	am
Arm realignment	Terminal, Filesystem (with timestamp, latency)	Has the arm realigned successfully?	
Value	Type of Logging	Description	
	Jog	T	-
Value Singularity Check	Type of Logging Terminal - Error	Description Log if joints are close to or at singularity	
Value Singularity Check Reaming Progress	Type of Logging Terminal - Error Terminal	Description Log if joints are close to or at singularity depth of reaming completed	
Value Singularity Check Reaming Progress Reamer ON/OFF	Type of Logging Terminal - Error Terminal Terminal	Description Log if joints are close to or at singularity depth of reaming completed	
Value Singularity Check Reaming Progress Reamer ON/OFF	Type of Logging Terminal - Error Terminal Terminal Terminal Terminal	Description Log if joints are close to or at singularity depth of reaming completed Button to kill all processes	its,
Value Singularity Check Reaming Progress Reamer ON/OFF ESTOP	Type of Logging Terminal - Error Terminal Terminal Terminal Terminal Terminal Terminal	Description Log if joints are close to or at singularity depth of reaming completed Button to kill all processes Motor speed, force values etc (?)	its, its
Value Singularity Check Reaming Progress Reamer ON/OFF ESTOP Actuator Health PCB Health	Type of Logging Terminal - Error Terminal Terminal Terminal Terminal Terminal Terminal Terminal Terminal Terminal Terminal	Description Log if joints are close to or at singularity depth of reaming completed Button to kill all processes Motor speed, force values etc (?) Current	nts, ences, et

Income of Martin D

New Project Management

- Jira doesn't work for us
- Using a white board and sticky notes for easier task management amongst the team
- Will continue using Jira for scheduling and Confluence for documentation
- Standups every Monday

Improved Dynamic Compensation

How?

- Tuned PID gains of wrench controller
- Increased controller rate from 20 to 40 hz
- Removed planner, which caused latency

Limitations

- Controller limited to 40 hz (API bottleneck)
- Only control of end-effector, not individual joints
- Can't execute multiple tasks simultaneously

Task Prioritization Kinematic Controller

Tasks:

- 1. Reaming Alignment Task (5 DoF)
- 2. Camera Alignment Task (1-2 DoF)
- 3. Singularity Avoidance Task (1 DoF)
- 4. Joint Limit Avoidance Task (1 DoF)

Task Prioritization Algorithm

n is the number of tasks, where highest priority is i = 1.

Future Work

Future Work

- CAD/3D print of new end-effector design
- Source off-the-shelf components needed for new end-effector design
- Watchdog/UI wireframe and initial implementation
- Test tracking performance of basic Inverse Kinematic Controller (1000 Hz)
 - Determine if we want to pursue this controller or keep wrench controller
- Implement online base estimation to remove need of offline hand-eye calibration

