

Autonomous Reaming for Total Hip Replacement (ARTHUR)

Progress Review - 8

Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi

September 28th, 2022

Progress Review #8 Goals & Tests

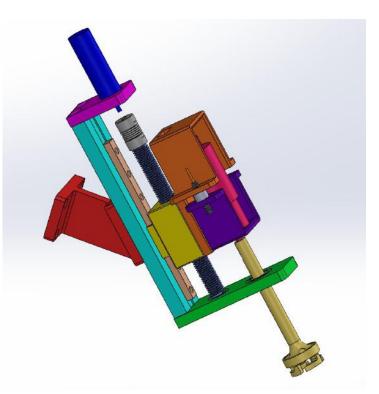
Goals:

- 3D printed linear actuated design
- Source PCB components
- Implement basic velocity control on real arm
- Basic task-prioritization framework
- UI Wireframe

Tests:

- Test 1
- Test 2

Progress and Challenges


3D Printed End-Effector Design

Objective			
Verify that the 3E for the system	0-printed linearly actuating end-effector is firmly assembled and can actuate as necessary		
Equipment	Desktop workstation, Robot arm, 3D-printed end-effector, Dial calipers		
Elements	Hardware unit: reaming end-effector		
Personnel	2 people necessary, one to monitor and evaluate the end-effector, and one to control the motion of the robot arm from ROS		
Location	NSH B512		
Procedure			
 Using a dial ca actuating the bal Attach the end Using admittan attachment of the Using dynamic 	printed linearly actuated end-effector and verify that all parts are firmly connected aliper, measure the distance the reaming motor and reaming handle can travel while lscrew by hand I-effector to the end of the Kinova Gen-3 arm nce mode, move the robot arm through the work area and verify performance and e end-effector when the arm is at singularity, at joint limits, and when inverted c compensation mode, move the pelvis throughout space and verify the end-effector ttached and does not exhibit excessive vibrations		
Validation			
2. The end-effect	apable of actuating reamer motor and reaming handle > 50 millimeters tor remains attached to the arm and is capable of actuating in any position/orientation tor's vibrations are minimal during dynamic compensation		

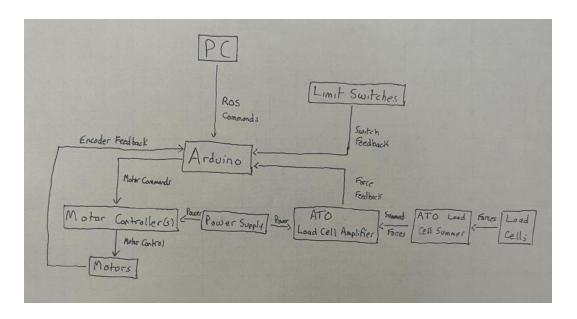
3D Printed End-Effector Design

- V1 of end-effector design
- Uses ballscrew + motor as linear actuator for moving assembly
- Force sensing:
 - Can either use ATO force sensors or current sensing
- Need to implement limit switches still
- Also need to design for added marker geometry and covers

Current 3D-Printed Design

Validation Criteria:

- > 50 mm actuation range
- Parts attach to the arm and remain attached
- Vibrations could not be tested as some parts are still loose (no bearings + bad fits)


Test 1 Challenges:

- Component dimensions:
 - Linear actuator we bought has weird dimensions that were hard to design around and let to several reprints for improved fits
- Hole sizing:
 - Some mistakes made with hole sizing, leading to necessary reprints
- Difficult to find way to integrate force sensors without them being in line with shaft
- Bearings need to be press-fit into the housing, but don't want to do that yet as we may need to reprint components in the future

Electrical Subsystem

- Necessary Components:
 - Microcontroller
 - Motor Controller
 - \circ Motors
 - Encoders
 - Force Sensors
 - ATO Load Cells
 - Current Sensing
 - Limit Switches
 - Power Supply

H

Electrical Subsystem

- Already have force sensors, motors + encoders and power supply
- Need a microcontroller, motor controller, and limit switches
- Can use Arduino Uno from inventory as microcontroller
- Can either use a second Cytron microcontroller from inventory (what we're already using) or order a motor shield from Pololu
- Planning on using from inventory for now

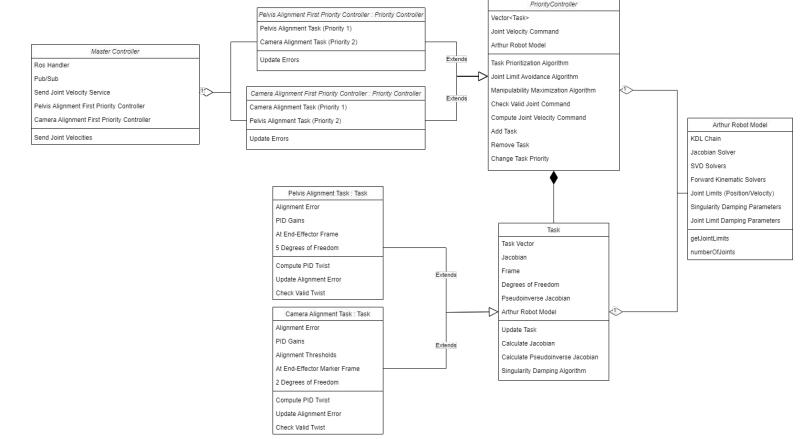
Test 2: Basic Tracking Velocity Controller

Objective	
Test the ability of	the velocity controller to track a moving frame
Equipment	Desktop workstation, Robot arm with reaming end effector
Elements	Controls sub-system
Personnel	Two people needed - one to operate and monitor the system, and another to move the pelvis frame.
Location	NSH B512
Procedure	
 Perform extrins Move the robot Run the control 	g marker to the Illiac Crest of the pelvis and ensure it is visible to the camera. ic calibration to determine the transformation between the camera and the robot frame. arm to its home position. ler script to track the pelvis marker frame with a predetermined offset. otate the pelvis within the workspace of the robot to allow the robot arm to track it.
Validation	
marker frame at 4	s able to achieve a position error of < 2mm and an orientation error of <=1.5 degrees

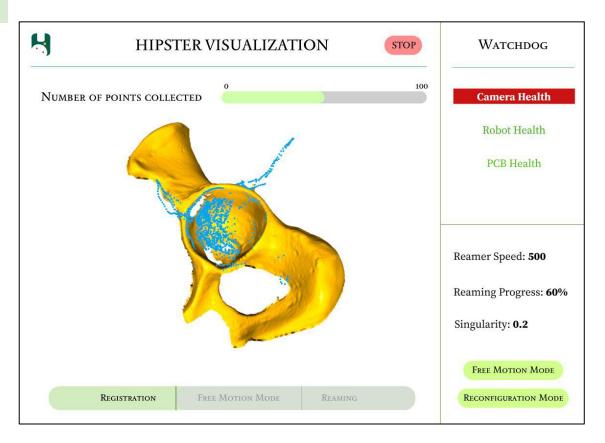
Test 2: Results

◆ → 中央世代 8		
/ /emu_metrics(lata(0)		
b		
5		
,		
hannan	mm	- mana

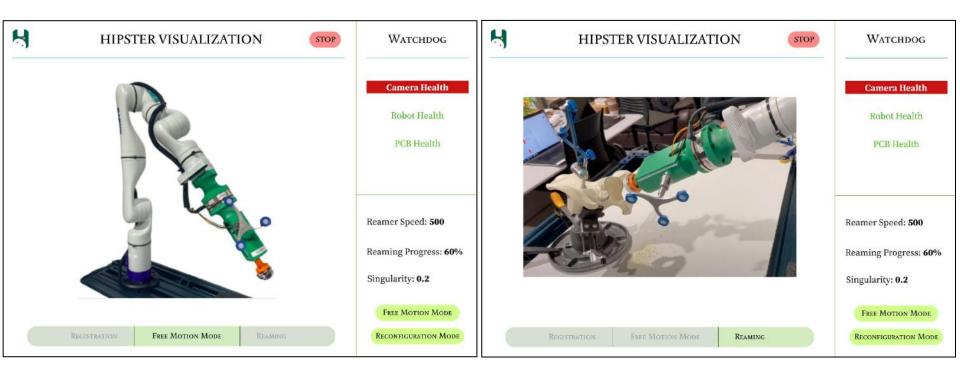
- Position Error < 2 mm
- Orientation Error < 1.5 degrees



Test 2: Challenges


- 40 Hz bottleneck with Kinova ROS API
- Many tunable parameters in the framework
- Dealing with joint-limits for continuous joints in the code
- Robot arm potentially blocks camera during tracking in the real-world test

Task Prioritization Framework


UI Wireframe

- Spoke with Costa to validate industry standards on medical UI screens
- UI wireframe has features for surgeon/user to interact and monitor the system
- Emphasis on simple, intuitive, and neat design
- Finalized Tools
 - RQt [Overall] +
 Open3D [Registration]

UI Wireframe

Future Work

Future Work

- Develop WatchDog v1 (Terminal Logger) and UI v1
- Iterate on end-effector design and get integrated with electrical subsystem
- Evaluate use of ballistics gel as a proxy for soft tissue around the pelvis
- Implement task prioritization on simulation and real arm

