

Autonomous Reaming for Total Hip Replacement (ARTHUR)

Progress Review - 9

Team C: Kaushik Balasundar, Parker Hill, Anthony Kyu, Sundaram Seivur, Gunjan Sethi
October 12th, 2022

Goals & Tests

Goals:

- Develop first version of User Interface
- Develop functioning watchdog data logger to display system-critical information
- Integrate end-effector with the electrical sub-system
- Evaluate reaming end-effector performance based on actual reaming
- Evaluate the efficacy of using ballistics gel as a proxy for soft-tissue around the pelvis
- Begin sending out quotes for end-effector manufacturing

Tests:

- Test 3: Watchdog logger test
- Test 4: Electrical sub-system integration test
- Test 5: Ballistics gel validation test

Progress and Challenges

Test 3: Watchdog Logger Test

Objective Test functioning of the first version of the watchdog, the terminal logger.	
Elements	Software
Personnel	2 people necessary; 1 person checking all the logs on the workstation and another person to manipulate the arm, hit e-stop etc.
Location	NSH B512
Dragodura	

Procedure

- 1. Turn on the Gen3 arm, the Atracsys camera, and the electrical subsystem for the end-effector.
- 2. Launch the watchdog node on the workstation to start logging the critical features of the system on the terminal.
- 3. Launch the perception node and check if the watchdog is recieving data from the camera about the pose of the end-effector marker, pelvis marker, and registration probe.
- 4. If perception subsystem health is ok, watchdog will send a signal to controller node to initiate reaming alignment.
- Send command to end-effector from watchdog to start reaming process after reaming alignment is completed.
- 6. Check if reamer speed and load cell force is logged on the terminal during reaming.

Validation

- Watchdog is able to communicate with all the subsystems.
- 2. Watchdog acts as a filter between subsystems to monitor communication and identify any malfunctions.
- 3. Watchdog is able to log all the critical information on the terminal for user/surgeon to evaluate.

Test 3: Watchdog Logger Test

Deliverables:

- Create to watchdog node with ROSCPP
- 2. Check camera health by validating data stream through topic
- 3. Check registration RMSE error
- Check joint limits, singularity, and alignment error from controls subsystem
- 5. Log all health parameters as text/boolean on the terminal
- 6. Check reamer speed and load applied from hardware subsystem

Test 3:

```
rmse error: True
rmse_error: True
rmse_error: True
rmse error: True
rmse_error: True
rmse_error: True
```

rmse error: True

rmse error: True

rmse_error: True

rmse_error: True

```
mrsd-team-c@hipster-mrsd:~/arthur_ws$ rostopic list
/controller_flag
/end_effector_pose
/initial_reaming_point
/input_health
/pelvis_error
/pelvis_pose
/percep_rmse
/percep_rmse
/perception_health
/probe_pose
/reaming_end_point
/rosout
/rosout_agg
/tf_static
```

```
End-effector not visible
 [ INFO] [1665600172.527141385]: Pelvis marker is visible
End-effector not visible
[ INFO] [1665600172.545164140]: Pelvis marker is visible
End-effector not visible
```


Test 3 Challenges:

- CMake compilation issues with multiple subsystems
- Integration still in progress as subsystems are still under development
- Code structure and modularity
- Rigorous testing and validation of watchdog performance
 - Identifying edge case where any system could fail
- Coming up with the decision tree for how information should flow between subsystems

Test 4: Electrical Sub-System Integration

Deliverables:

- Reamer motor can be turned on and off
- 2. Ball-screw motor can be turned on and off
- 3. PID Velocity control
- 4. Commands can be sent and received via ROS
- Limit switches functional
- 6. Limit switch turns off both motor when upper/lower limit is reached

Objective

Verify that the end-effector is properly integrated with the electrical system and capable of reporting the axial force applied to the pelvis and the rotational velocity of the reamer to a ROS topic

Equipment	Desktop workstation, robot arm, end-effector, electrical subsystem
Elements	Hardware subsystem: need all elements that allow end-effector to properly function
Personnel	2 people necessary, one person at the workstation to observe the data being received by certain ROS topics, and one person to manipulate the arm and end-effector
Location	NSH B512

Procedure

- 1. Attach the end-effector to the end of the Kinova Gen-3 arm
- 2. Connect all wires from the end-effector to the electrical subsystem
- 3. Using admittance mode, move the arm so that the reamer head is within 50 millimeters of a foam pelvis when the end-effector is fully retracted
- 4. Echo the ROS topics which report axial pelvis force and reamer velocity
- Send a command via a ROS topic to the arduino to start the reamer motor spinning at 300 rpm and verify that it starts and that the reported reamer velocity measured via encoders remains consistent
- Send a command via a ROS topic to the arduino to begin rotating the ballscrew motor and verify that it starts to move the reamer head
- Once the reamer head makes contact with the pelvis, verify that a force is recorded in ROS and that the reamer velocity remainds consistent at 300 rpm

Validation

- 1. Reaming motor is capable of being turned on and off
- 2. Ballscrew motor is capable of being turned on and off
- 3. Reamer velocity can be monitored via a ROS topic and remains controlled to a set velocity via PID control
- The axial force applied to the pelvis can be monitored via a ROS topic either by indirect current sensing or load cells
- 5. Electrical subsystem and end-effector report no errors during test

Test 4: Electrical Sub-System Integration

Completed Tasks to Accomplish Integration:

- Elongated reamer motor wires
- Elongated linear actuator wires
- Soldered to and attached wires to limit switches
- Placed all wires in cable sleeve and routed along the arm
- Developed Arduino code using previous motor control code which is capable of controlling both motors and uses interrupts to detect the encoders and limit switches
- Validated that all performance criteria for the electrical system was met

Test 4 Challenges:

- Issues with Cytron MD10C
 - Two we initially received had no terminal blocks, so we had to solder on two two-block terminal blocks instead of one four-block terminal block
 - Cytron we received to replace this soldered one did not work
- Delays in receiving current sensors
 - While Chris was gone our current sensors were not ordered, so we are still waiting to integrate that -> not a part of this test however
- The wiring is a rats nest
 - Will need to develop a 3D printed part to hold all components and organize the wires better

Test 5: Ballistics gel evaluation

Objective Validate the efficacy of the ballistics gell in simulating the real dynamics of pelvis motion during reaming.	
Elements	Surgical setup test
Personnel	Two people are needed - one to operate the system, and another for manual intervention in-case test setup becomes unstable and requires manual intervention.
Location	NSH B512
Dropoduro	<u> </u>

Procedure

- 1. Encase the pelvis foam bone in a container filled with Ballistics gel, while ensuring that the acetabulum is visible and accessible to the robot arm.
- 2. Use mounting screws to screw in the pelvis tracking marker on the Illiac Crest of the pelvis.
- 3. A few seconds before collecting the reaming data, start a rosbag file to record the pelvis marker pose topic
- 3. Perform the reaming operation on the pelvis. Continuously monitor the setup to carry out any manual intervention and stop the system if the setup becomes unstable.
- 4. Post-process the data and obtain the frequency spectrum of the collected data.

Validation

- 1. The marker's frequency spectrum of velocity and acceleration during reaming should be comparable to the data obtained during the Cadaver Lab.
- The maximum range of motion of the pelvis should be comparable to the data obtained during the Cadaver lab.

Test 5: Ballistics gel evaluation

Test 5: Ballistics gel evaluation

Test 5: Challenges

- Variation in amount of input force exerted
 - Assumed 50 N axial reaming force
- Bone vs foam-bone variations
- Utilizing raw camera data for FFT analysis
- Variation in camera update frequencies (60 Hz vs 330 Hz)
- Swapping between different pelvis models after testing
- Maintenance and storage of Ballistics gel
 - Peppermint oil

User Interface: Version 1

User Interface : Version 1 Improvements + Future Work

- Add alignment assistance with transform handles (axis visualization)
- Colored pointclouds for better usability
- Compute relative transformation between pelvis and implant to obtain final reaming end-point
- Watchdog + UI Integration in progress

Controls Update: Joint Limit Avoidance Fixed

Controls Update: Singularity Avoidance

Controls Update: Task Prioritization/Camera Alignment

Controls Update: Task Prioritization/Camera Alignment

Future Work

Future Work

- Task prioritization working on the real arm
- End-effector controls integrated with ROS
- Finalized user interface
- Watchdog integration with all sub-systems
- Allow the communication of a surgical plan using the user-interface

Thank you!