



## System Development Review

Autonomous Reaming for Total Hip Replacement (ARTHuR)

#### The Team



Kaushik Balasundar

Perception and Sensing Lead



Parker Hill

Mechanical Systems Engineering Lead



**Anthony Kyu** 

Controls and Actuation Lead



Gunjan Sethi

Software Engineering Lead



**Sundaram Seivur** 

System V&V Lead

#### Contents

- Project description
- Use Case / System Graphics
- Requirements Modifications
- Current System Status
- Project Management: Schedule,Test Plan, Budget, Risks



#### Use Case

#### Why ARTHuR?

- High accuracy required for reaming and implant placement
- 2. Surgeons heavily depend on intuition and prior experience
- 3. Large kickback from bone during manual operation





### Project Description



A fully autonomous robotic arm aimed at performing acetabular reaming with high accuracy, eliminating the need of surgeons to use intuition to correctly position/angle the reamer.



### Spring 2022 System Status





### Spring 2022 Challenges

- Large vibrations in the arm and end-effector during reaming -
- Planning subsystem was slow and dependent on arm configuration -
  - Explore better control strategies –
  - Need a way to monitor and interact with the system -

### System Level Requirements: Changes

#### **Mandatory Performance Requirements**

 $The\ system\ will$ 

| Spring 2022                                                                                                 | Fall 2022                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M.P.1.1 Localize the robot arm with a latency less than or equal to 50 ms                                   | M.P.1.1 <b>Use the Atracsys camera to track</b> the pelvis, registration probe, and robot arm markers with a frame rate greater than or equal to <b>50 Hz</b> or latency less than or equal to <b>20 milliseconds</b> |
| M.P.1.2.1 Localize the robot arm with respect to the pelvis with a position error of less than 1 mm         | M.P.1.2 Use the Atracsys camera to track the pelvis, registration probe, and robot arm markers with an accuracy of less than or equal to <b>0.55 mm</b>                                                               |
| M.P.1.2.2 Localize the robot arm with respect to the pelvis with an orientation error less than 1.5 degrees | M.P.2.2 Use the Atracsys camera to track the pelvis and robot arm error with a position accuracy less than or equal to 2 mm                                                                                           |
|                                                                                                             | M.P.2.3 Use the Atracsys camera to track the pelvis and robot arm error with an orientation accuracy less than or equal to 1.5 degrees                                                                                |
|                                                                                                             | M.P.3 <b>Perform registration</b> between the collected pointcloud and the given 3D pelvis scan with a root mean square ( <b>RMS</b> ) error of 0.1 mm                                                                |

### System Level Requirements: Changes

#### **Mandatory Performance Requirements**

The system will

| Spring 2022                                                                                                    | Fall 2022                                                                                                                                                     |
|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M.P.2 Plan the trajectory based on the given surgical plan with a latency less than or equal to 150 ms         | Removed                                                                                                                                                       |
| M.P.3.1 Execute surgical plan by reaming along the trajectory with an position error of less than 3 mm         | M.P.5.1 Ream the pelvis based on the provided surgical plan with a position accuracy of 2 mm                                                                  |
| M.P.3.2 Execute surgical plan by reaming along the trajectory with an orientation error of less than 3-degrees | M.P.5.2 Ream the pelvis based on the provided surgical plan with an orientation accuracy of 1.5 degrees                                                       |
| M.P.4.1 Compute error and interpret the movement of the pelvis with a latency less than or equal to 50 ms      | M.P.2.1 Continuously calculate the error in pelvis movement with a frame rate greater than or equal to 50 Hz or latency less than or equal to 20 milliseconds |
| M.P.4.2 Generate a new trajectory if the errors are greater than 1 mm or greater than 1.5 degrees              | Removed                                                                                                                                                       |

### System Level Requirements: Changes

#### **Mandatory Performance Requirements**

The system will

| Spring 2022                                                                                                      | Fall 2022                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| M.P.5 Adapt and compensate for movement by generating a new trajectory with latency less than or equal to 150 ms | M.P.4.1 Dynamically compensate for the movement of the pelvis by retracting or powering off the reamer with a latency of less than or equal to 25 ms. |
|                                                                                                                  | M.P.4.2 Dynamically compensate for the movement of the pelvis by realigning the reamer with a latency of less than or equal to 50 ms                  |
| M.P.6 Allow the surgeon to place the robot arm to an initial position by back-driving the robotic arm            | M.P.6 Allow the surgeon to place the robot arm in an initial position by back-driving the robotic arm                                                 |
| M.P.7 Provide the surgeon with visual feedback with a latency less than or equal to 150 ms                       | M.P.7 <b>Provide</b> the surgeon with <b>visual feedback</b> with a <b>latency</b> less than or equal to <b>150 ms</b>                                |
| M.P.8 Allow the surgeon to e-stop the system, stopping the system within 500 ms                                  | M.P.8 <b>Allow</b> the surgeon to <b>e-stop</b> the system, stopping the system within 500 ms                                                         |

## Current System Status

- Functional Descriptions
- Subsystem Depictions
- Current Functionality
- Modeling, Analysis, Test Results
- Challenges Faced
- Major Remaining Challenges











**Camera Alignment Task** 

**Joint Limit Avoidance** 

**Singularity Avoidance** 

### Controls



**Pelvis Frame Alignment Task** 

| Finished Test                        | Results                                                                                     | Outcome |
|--------------------------------------|---------------------------------------------------------------------------------------------|---------|
| Velocity Controller<br>Tracking Test | 1. Tracking frame at 40 Hz                                                                  | Success |
|                                      | <ul><li>2. Position Error &lt; 2 mm</li><li>3. Orientation Error &lt; 1.5 degrees</li></ul> |         |

| Upcoming Tests | Description                                  |
|----------------|----------------------------------------------|
| Test 7         | Verify system stability near singularities   |
| Test 8         | Verify system stability near joint limits    |
| Test 9         | Camera alignment using real arm              |
| Test 11        | Reamer controls integrated with arm controls |

#### Controls

#### **Challenges**

- 1. 40 Hz bottleneck with Kinova ROS API
- Enforcing collision boundaries between robot and environment
- 3. Framework architecture design
- 4. Combining several independent algorithms coherently
- 5. Many tunable parameters in the framework

#### **Next Steps & Remaining Challenges**

- Implementing singularity avoidance on real arm
- 2. Implementing camera-alignment task on real-arm
- 3. Integration with watchdog
- 4. Integration with UI
- 5. Testing & refinement

### Watchdog





### Watchdog

```
End-effector not visible
[ INFO] [1665600172.527141385]: Pelvis marker is visible
End-effector not visible
[ INFO] [1665600172.545164140]: Pelvis marker is visible
End-effector not visible
```

**Current Functionality** 

| Finished Test                           | Results                                  | Outcome     |
|-----------------------------------------|------------------------------------------|-------------|
| Test 3 Test functioning of the watchdog | 1. Check system inputs & hardware health | Success     |
| version 1 as<br>terminal logger         | 2. Check registration RMSE               |             |
| tomma roggor                            | 3. Check controls health                 | In-progress |

| Upcoming Tests | Description                                                                             |
|----------------|-----------------------------------------------------------------------------------------|
| Test 10        | Evaluate watchdog functionality and display all health parameters on the User Interface |

### Watchdog

#### **Challenges**

- Integration still in progress as subsystems are still under development
- 2. Code structure and modularity
- 3. Rigorous testing and validation of watchdog performance
  - a. Identifying edge case where any system could fail.

#### **Next Steps**

- 1. Test watchdog functionality with the controls subsystem on the real arm by simulating edge cases.
- 2. Integrate watchdog with the User Interface and display all critical parameters.
- 3. Log critical parameters on to a text file for future reference.

#### Hardware & Actuation

#### **New End-Effector Design!**

- Previous design led to vibrations, loss of degrees of freedom, and awkward planning
- New design is linearly actuated, held at an angle, and allows for more robust controls to be integrated
- New Components:
  - ServoCity 116 rpm Planetary Gear Motor
  - Ball Screw Linear Actuator
  - Limit Switches
  - Vibration Isolation Bearings and Couplings



**CAD Depiction** 

#### Hardware & Actuation



**Current Functionality** 

| Finished Tests                            | Results                                                                                   | Outcome |
|-------------------------------------------|-------------------------------------------------------------------------------------------|---------|
| Test 1 3D Printed Prototype Assembled     | Prototype capable of > 50 mm actuation, minimal vibrations, remains attached              | Success |
| Test 4 Integration with Electrical System | Able to control motors via ROS, limit switches integrated, information transmitted to ROS | Success |

| Upcoming Tests | Description                                                                         |
|----------------|-------------------------------------------------------------------------------------|
| Test 11        | Fully manufactured end effector prototype integrated with electrical system and ROS |



#### Hardware & Actuation

#### **Challenges:**

- Typical 3D printing issues
- Had issues with Cytron MD10C
  - Some had terminal blocks and didn't work, some had no terminal blocks and did work
- Delays in receiving our current sensors
  - No current sensors meant a delay in being able to measure force
- Wiring :(
  - Could not find any connectors in inventory that worked for us, leading us to rely on soldering wires together

#### **Moving Forward:**

- Redesigning end-effector parts for aluminum manufacturing
  - One more round of 3D printing to validate
- Get quotes and manufacture parts
- Integrate current sensors into our electrical system
  - Will allow for force sensing
- Develop more robust microcontroller control code for system
  - Want to turn on reaming motor when contacting pelvis and use PID force control



### Update as of 10/24

- Xometry order placed
- Parts should arrive by November 10th and 11th
- Parts made of Aluminum 6061
- Ordered two different end-effector adapter components (with two different angles)



### Ballistics Gel Experimentation











### Perception & Sensing



**Perception Subsystem Overview** 



**Pointcloud Collection** 



Registration

### Perception & Sensing

#### **Challenges**

- 1. Interfacing Atracsys camera with ROS
- 2. Multiple frame handling
- 3. High-fidelity data acquisition
- 4. Validation criteria for registration and tracking performance

#### **Next Steps**

- 1. Integrating perception with UI
- 2. Online hand-eye calibration
- 3. FVD final error validation

#### UI







| ▼ Implant Allgrament Fool |
|---------------------------|
| Twitten 3                 |
|                           |
| 10000                     |
| Treatment 2               |
|                           |
| Estation X                |
|                           |
| Interes Y                 |
| Estates 2                 |
|                           |
| n Advancerityleing        |
|                           |

| Implant Alignment Too | Imp | lant | Alig | nm | ent | Toc |
|-----------------------|-----|------|------|----|-----|-----|
|-----------------------|-----|------|------|----|-----|-----|

| [Internal] Tests                                               | Results                                                                     | Outcome |
|----------------------------------------------------------------|-----------------------------------------------------------------------------|---------|
| Loading multiple<br>pointclouds + Displaying<br>custom layouts | Loaded pelvis and cup<br>models; Created custom<br>implant alignment layout | Success |
| Viewing/manipulating multiple pointclouds                      | Applied transformations through UI widgets onto pointclouds                 | Success |
| Communicate with watchdog via ROS                              | Create simple subscriber to obtain watchdog data                            | TODO    |

| Upcoming Tests | Description                                      |
|----------------|--------------------------------------------------|
| Test 6         | End-point pose communicated through UI to system |
| Test 10        | UI Integration with WatchDog + Subsystems        |

#### UI

#### **Challenges**

- Selecting base framework for development
- 2. Matching UI wireframes due to limitations in software
- 3. Structuring large codebase for maintainability and debugging
- 4. System integration challenges

#### **Upcoming Tasks**

- 1. Embed registration task into UI
- 2. Test complete system integration





[Left] Wireframe [Right] Current UI

### Project Management

- Schedule Status
- Test Plan
- Budget Status
- Risk Management





#### Schedule Status

Hardware Subsystem



| Milestones                             | Date         | Status    |
|----------------------------------------|--------------|-----------|
| 3D Printed Linear Actuator Design      | September 25 | Completed |
| End-effector Design Lock               | October 15   | Completed |
| Electrical Subsystem Working Prototype | October 15   | Completed |
| Manufactured End-Effector              | November 6   | Ongoing   |
| Electrical Subsystem Final Tests       | November 6   | Ongoing   |





### Schedule Status

Controls Subsystem

| August 29, 2022 → October 31, 2022      | Tuning gains - Wrench Controller             |
|-----------------------------------------|----------------------------------------------|
| August 29, 2022 → September 12, 2022    | Build basic velocity controller              |
| September 12, 2022 → September 26, 2022 | Build basic task-prioritization framework    |
| September 30, 2022                      | Controller Architecture Lock                 |
| September 26, 2022 → October 3, 2022    | Build tasks for task-prioritization          |
| October 3, 2022 → October 31, 2022      | Integrate & test velocity controller with TP |
| November 1, 2022 → November 8, 2022     | Adding feedback with F/T sensor              |

| Milestones                                  | Date         | Status                                          |
|---------------------------------------------|--------------|-------------------------------------------------|
| Basic Joint Velocity Controller Implemented | September 12 | Completed                                       |
| Controller framework lock                   | September 30 | Completed                                       |
| Task Prioritization Controller Implemented  | October 31   | Ongoing (Working in Sim, Needs testing in real) |
| Reamer Force Feedback                       | November 8   | To Do                                           |



### Schedule Status

Watchdog & User Interface

| August 29, 2022 → September 7, 2022    | Create Watchdog Architecture  |             |                       |
|----------------------------------------|-------------------------------|-------------|-----------------------|
| September 7, 2022 → September 30, 2022 | Watchdog v1 - Terminal logger |             |                       |
| October 1, 2022 → October 23, 2022     |                               | Watchdog v2 |                       |
| October 24, 2022 → November 6, 2022    |                               |             | Test & debug watchdog |
| September 4, 2022 → September 17, 2022 | Ul wireframe v1               |             |                       |
| September 18, 2022 → October 1, 2022   | Build UI v1                   |             |                       |
| October 2, 2022 → October 15, 2022     |                               | Improve UI  |                       |

| Milestones                          | Date       | Status      |
|-------------------------------------|------------|-------------|
| Watchdog version 1- Terminal Logger | October 2  | Completed   |
| User Interface Version 1            | October 2  | Completed   |
| Watchdog & UI integration           | November 1 | In-Progress |



### Test Plan - Capability Milestones

#### **Progress Review 10:**

- Task-prioritization working with the real arm
- End-effector control integrated with ROS
- Finalized user interface and watchdog
- Use user interface to communicate surgical plan to the system

#### **Progress Review 11:**

- Fully manufactured end-effector control integrated with system
- Demonstrate full system capabilities prior to our fall validation demonstration

| Schedule                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    |                                                                      |  |  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|--|--|--|--|
| Identifier                      | Capability Milestone(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Associated Tests                                   | System Requirements                                                  |  |  |  |  |
| Progress Review 7<br>(09/07)    | Re-assemble system     Run SVD again     Assess dynamic compensation with wrench controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                | N/A                                                                  |  |  |  |  |
| Progress Review 8<br>(09/28)    | Procession of the system  - Re-assemble system - Run SVD again - Assess dynamic compensation with wrench controller  - Assemble 3D-printed end-effector design - Implement basic velocity control on arm  - Develop first version of user interface - Develop functioning logger in watchdog - Integrate end-effector with electrical subsystem - Evaluate use of ballistics gel as a proxy for soft tissue around the pelvis  - Task-prioritization working with the real arm - End-effector control integrated with ROS - Finalized user interface and watchdog - Use user interface to communicate surgical plan to the system  - Fully manufactured end-effector control integrated with system - Demonstrate full system capabilities | Test 1<br>Test 2                                   | M.F.1<br>M.F.2<br>M.F.4<br>M.F.5                                     |  |  |  |  |
| Progress Review 9 (10/12)       | - Develop functioning logger in watchdog - Integrate end-effector with electrical subsystem - Evaluate use of ballistics gel as a proxy for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | M.F.4<br>M.F.5<br>M.F.7<br>M.F.8<br>M.N.2<br>M.N.3                   |  |  |  |  |
| Progress Review 10<br>(11/02)   | End-effector control integrated with ROS     Finalized user interface and watchdog     Use user interface to communicate surgical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test 2 Test 6 Test 7 Test 8 Test 9 Test 10 Test 11 | M.F.1<br>M.F.2<br>M.F.5<br>M.F.7<br>M.F.8<br>M.N.1<br>M.N.2<br>M.N.3 |  |  |  |  |
| Progress Review 11<br>(11/16)   | integrated with system - Demonstrate full system capabilities prior to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test 4<br>Test 11<br>FVD                           | All                                                                  |  |  |  |  |
| Fall Validation Demo<br>(11/21) | - Demonstrate full system capabilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FVD                                                | All                                                                  |  |  |  |  |

#### Fall Validation Demonstration

Location: NSH B512

Equipment: Kinova Gen-3 Arm, Atracsys Camera, PC,

Sawbone Pelvis in Ballistics Gel, Fiducial Markers



**Approximate Test Setup** 

#### **Quantitative Performance Metrics:**

- The camera is able to localize the registration probe, end-effector marker, and pelvis marker within a latency of < 25 ms.
- The system is able to detect pelvis position error greater than 1.5 mm, and an orientation error greater than 1.5 degrees within a latency of 25 ms.
- Personnel should be able to move robot arm freely with the free motion mode.
- Once the e-stop is pressed the motor turns off and the arm stops moving within 500 ms.
- The axial force applied to the pelvis must not exceed 100 Newtons.
- When the pelvis error is more than 2 mm or 1.5 degrees, the end-effector will retract and the arm will realign with the pelvis pose before reaming again.
- While reaming, the pelvis alignment error is less than 2 mm and less than 1.5 degrees.
- User interface allows for control and visualization of the procedure with a latency no greater than 150 ms.

#### Fall Validation Demonstration

Location: NSH B512

**Equipment:** Kinova Gen-3 Arm, Atracsys Camera, PC,

Sawbone Pelvis in Ballistics Gel, Fiducial Markers

**Approximate Test Setup** 

#### What you will see:

- A surgical plan will be chosen using the UI
- Arm autonomously aligns to the desired pelvis pose
- End effector actuates until it makes contact with bone
- Reamer turns on to start reaming bone
- Dynamic compensation occurs throughout
- End effector retracts if pelvis moves > 2 mm or 1.5 degrees
- Reaming stops when end-point is reached

### Improved Validation

#### **Improved Validation Necessary:**

- Better validation necessary to truly verify the performance of the system
- Need to be able to compare the surgical plan directly to the surgical result

#### **Procedure:**

- 1. Scan pelvis prior to procedure
- 2. Ream acetabulum using ARTHuR
- 3. Scan pelvis after the procedure
- 4. Subtract both meshes from one another
- 5. Compare resulting reamed bone to surgical plan



**Faro Arm** 



**Autodesk Meshmixer** 

### Budget Status

| Budget | Expenditure | Balance  |  |
|--------|-------------|----------|--|
| \$5000 | \$4226.23   | \$773.77 |  |

Percentage Spent: 85%

#### **Expenses Left:**

Backup parts — \$250 Swag — \$250 Emergencies — \$250

Balance at the end of project — \$23.77



### Risk Management

| Risk# | Risk                                   | Туре         | Likelihood # | Consequence # | Risk Mitigation Action                                                                                                                                                                                                                                         |
|-------|----------------------------------------|--------------|--------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | End effector development<br>delays     | Technical    | 4            | 3             | Start early and lock design by October 15th Brainstorm multiple solutions 3D print to test before final manufacturing Make system simple enough to get it manufactured in-house Use 3D printed design as a fallback                                            |
| 2     | Electrical sub-system failure & delays | Technical    | 2            | 4             | Test breadboard prototype Seek feedback from Luis Use off-the-shelf boards to reduce PCB complexity of PCB Order spares                                                                                                                                        |
| 3     | Dynamic compensation not achievable    | Technical    | 3            | 3             | Iterate with multiple control architectures     Utilize earlier compensation solution as a fallback     Evaluate need for isolating controller from ROS     Benchmark latencies in system     Use pub/sub communication instead of server/client communication |
| 4     | UI does not integrate with system      | Technical    | 4            | 2             | Start working on the UI early     Plan architecture and consult each stakeholder     Start testing by Oct 31st                                                                                                                                                 |
| 5     | Performance requirements not met       | Programmatic | 4            | 4             | Track & evaluate quantification of performance requirements Revisit performance requirements every sprint meeting Have a risk-manager to track key risks                                                                                                       |
| 6     | Integration issues between subsystems  | Technical    | 5            | 4             | Define clear inputs and outputs of each subsystem     Host frequent meetings & retrospectives     Create documentation at the end of every milestone                                                                                                           |



### Risk Management

| Risk ID | Risk                                                              | Туре         | Likelihood | Consequence |
|---------|-------------------------------------------------------------------|--------------|------------|-------------|
| 2       | Robot arm failure                                                 | Technical    | 2          | 5           |
| 5       | Performance requirements not met                                  | Programmatic | 4          | 4           |
| 6       | Integration issues between subsystems                             | Technical    | 5          | 4           |
| 7       | Camera hardware fails                                             | Technical    | 2          | 4           |
| 9       | Team member has difficulties working on their part of the project | Programmatic | 5          | 2           |
| 12      | End effector development delays                                   | Technical    | 4          | 3           |
| 13      | Electrical subsystem failure & delays                             | Technical    | 3          | 4           |
| 14      | Dynamic compensation not achievable                               | Technical    | 2          | 3           |
| 15      | System robustness issues                                          | Technical    | 4          | 3           |
| 17      | UI does not integrate with system                                 | Technical    | 4          | 2           |

#### **Ongoing Risks Summary**



### Risk Management

|            | 5 | #10       | #9         |           |                 |     |
|------------|---|-----------|------------|-----------|-----------------|-----|
|            | 4 |           | #3,<br>#17 | #14       | #5, #12,<br>#13 | #6  |
|            | 3 |           | #16        | #4        | #15             |     |
| Likelihood | 2 |           |            |           | #7              | #2  |
|            | 1 | #1,<br>#8 |            |           |                 | #11 |
|            |   | 1         | 2          | 3         | 4               | 5   |
|            |   |           | (          | Consequen | се              |     |

|             | 5 | #10       | #9         |           |                    |     |
|-------------|---|-----------|------------|-----------|--------------------|-----|
|             | 4 |           | #3,<br>#17 | #12       | #5                 | #6  |
| Likelihood  | 3 |           | #16        | #4        | #15,<br><b>#13</b> |     |
| Likeliilood | 2 |           |            | #14       | #7                 | #2  |
|             | 1 | #1,<br>#8 |            | #4        |                    | #11 |
|             |   | 1         | 2          | 3         | 4                  | 5   |
|             |   |           | (          | Consequen | ce                 |     |

Project Management Review Risks

**Current Risks** 

# We got to see the surgery:)

(\$10 if you want to see pictures)





Thank You!
Any Questions?





Autonomous Reaming for Total Hip Replacement (ARTHuR)