Individual Lab Report 8 - Progress Review 9

Autonomous Reaming for Total Hip Replacement

. R

~IPSTER|ARTHuR

Anthony Kyu

Team C:

Kaushik Balasundar | Parker Hill | Anthony Kyu
Sundaram Seivur | Gunjan Sethi

October 13th, 2022

Carnegie Mellon University

The Robotics Institute

Contents

1 Individual Progress

2 Challenges

3 Team Work
3.1 Anthony Kyu
32 ParkerHill e
3.3 Sundaram Seivur e e e e e e
3.4 Kaushik Balasundar
3.5 GunjanSethi

4 Plans

MRSD 2022 Team C: Individual Lab Report 8 - Progress Review 9

1 Individual Progress

The main task completed since the last progress review was implementing the task prioritiza-
tion framework (with Kaushik) that was created and formalized last progress review (Figure 1).

Update Emorn

Sand Joint Valoctias

Changs Tash Froety

Lipdate Alignmant Emor

Check Valid Twigt

Figure 1: UML Diagram of the Task Prioritization Controller Framework

In our previous work on the joint velocity controller, we already implemented the Task and
Arthur Robot Model classes, so algorithms such as pseudoinverse jacobian calculations, singular-
ity damping, and joint limit avoidance were implemented. A few functions within the Robot Model
class had to be implemented, which allowed the KDL Chain object to be parsed based on the given
frame name. This allowed us to calculate different jacobians for different frames/segments of the
URDF.

With this, we then implemented the Priority Controller class, which essentially holds multiple
tasks and prioritizes which task is most important, sacrificing degrees of freedom for tasks of lower
priority. For instance, we want to track the pelvis as well as track the camera, but we are willing
to sacrifice camera tracking accuracy for pelvis tracking accuracy if we do not have enough de-
grees of freedom in the arm. In this class, we re-implemented joint limit avoidance (Figure 2), and
implemented singularity avoidance and task prioritization algorithms. For singularity avoidance,
we used gradient estimation for a measure of manipulation and then move in the task null space to
maximize manipulability and therefore minimize proximity to singularities. The implementation
of this algorithm can be observed in Figure 3.

For task prioritization, we project lower-priority tasks into the null space of higher-priority
tasks. For the project, our highest priority task is tracking the pelvis frame, and the secondary task

Page 1

MRSD 2022 Team C: Individual Lab Report 8 - Progress Review 9

Figure 2: Joint Limit Avoidance Implementation. As Joint 2 reaches its joint limit, the controller stops
using Joint 2 and adapts to using other joints to do pelvis alignment.

i
-
L

’,'0

| ee_maﬁ& oo & ee marke? _L'_ame_
? dum_fLmyis ! dl‘qﬂh_?r_thfls

vr

3 >

Figure 3: Implementation of Singularity Avoidance. On the left, singularity avoidance is off, so the
robot moves through a singularity while tracking a dummy pelvis frame. On the right, singularity
avoidance is on, so the arm reconfigures itself in its redundant space to avoid singularity while tracking
the pelvis.

is aligning the end-effector markers to the camera. The task prioritization algorithm can be seen in
Figure 4, and the implementation can be observed in Figure 5.

We also implemented helper functions to add and remove tasks, as well as to check if joint
velocities and future joint positions are valid, reducing joint velocities linearly if they are too high
from the given twist command.

Once this was implemented, the Task class was extended into a Pelvis Alignment Task and a
Camera Alignment Task which each implemented its own PID controller to output the desired twist
command based on the error of alignment with the pelvis or camera. The Master Controller was
also reconfigured to use the newly implemented tasks. Once a dummy camera frame was added to
the simulation, these classes were tested and debugged.

Page 2

MRSD 2022 Team C: Individual Lab Report 8 - Progress Review 9

Task Prioritization Algorithm

- n -
1= Z:‘zi qir Were \’\ J, is the jacobian for a

. jc] #r B [o task.
o= (0([To ™) (o= (X d))

/,.. .
Nj :(I — (Jj=1- Nj=1)" (T - N;'—l)): & R0 eacedt

Ny = I, and
n is the number of tasks, where highest priority isi = 1.

Figure 4: Task Prioritization Framework

dummy_cainera dummy’_caera

| | ¢
!ee_mar o irame

Ty
-

Figure 5: Implementation of Task Prioritization Framework. On the left is just the pelvis alignment
task. On the right is the execution of two simultaneous tasks, with Pelvis Alignment as the highest
priority and Camera Alignment as the lowest priority. As shown on the right, the end-effector mark-
ers align with the dummy camera frame without sacrificing the accuracy of the pelvis alignment task.
Since there aren’t enough degrees of freedom left to fully align the markers with the camera, degrees
of freedom for that lower-priority task are sacrificed.

Page 3

MRSD 2022 Team C: Individual Lab Report 8 - Progress Review 9

2 Challenges

The major challenges for this progress review were the immense amount of refactoring of code
needed to implement the framework and the unclear API of using the KDL library to calculate
jacobians in different frames of the robot.

In the last progress review, we only had a limited number of classes from this framework imple-
mented. Most of the code was written into one file, which was the Master Controller file. However,
when swapping over to this framework entirely, this required most of the code to be moved into
modular class files, which required an intense amount of refactoring, and consequently caused a
lot of bugs that took a chunk of time to debug through testing and code reviews.

The other challenge was rooted in the need to calculate jacobians in different frames of the
robot (end-effector frame, and end-effector marker frame). Luckily, the KDL library already has
some functions to allow us to do that. However, the documentation for these functions was not
entirely clear, and required parsing through the KDL chain to get parameters for jacobian calcula-
tions. For some reason, the parameters are not consistent throughout the library, which caused a
bug in what frame the jacobian was in, and therefore caused issues when testing task prioritization.
After rigorous testing, and reading the computed output jacobians to see if they made sense, this
issue was resolved.

3 Team Work

3.1 Anthony Kyu

Anthony worked with Kaushik to set up the task-prioritization framework, creating several
new classes based on the software architecture, further setting up the simulation environment,
and finally testing the framework in simulation. Anthony also worked with Parker to design the
end-effector marker mount, providing feedback on the design, and helping 3D print some parts.
Anthony also helped Sundaram to debug some of the Watchdog Module code, providing sugges-
tions for code structure and CMake. And lastly, Anthony helped collect data for reaming on the
pelvis encased in ballistics gel.

3.2 Parker Hill

Parker continued working on the end-effector, integrating a new motor plate for indirect force
sensing, limit switches, and a marker holder into the design. He 3D-printed these new parts and
assembled the end-effector to a functional state. Working with Kaushik, he then setup the electrical
system and integrated it with the end-effector, allowing for the end-effector to be controlled by
ROS. Finally, he collaborated with Gunjan and Sundaram to determine how to receive information
from the watchdog so that it can be displayed in the user interface.

3.3 Sundaram Seivur

Sundaram worked on developing the watchdog module by setting up a ROSCPP node and
successfully compiling the CMake file with the necessary dependencies. For this, he worked with

Page 4

MRSD 2022 Team C: Individual Lab Report 8 - Progress Review 9

the owners of all the subsystems to finalize the functionality of the watchdog and the features that
need to be developed. He made a decision tree that helped with the development of the subsystem
and rigorously tested the inputs and perception subsystem working. He also worked on creating the
ballistics gel mold for testing the pelvis model. He worked with Kaushik and Anthony to collect
data by reaming the pelvis model submerged in the gel and analyzing the results generated. He
discussed with Parker the integration of the Watchdog module with the User Interface and assisted
him with evaluating the performance of the 3D-printed end-effector.

3.4 Kaushik Balasundar

Kaushik worked with Anthony in setting up the task-prioritization framework and testing it in
simulation. He assisted Parker with wiring electronics and programming the reamer end-effector.
He assisted Sundaram in setting up the ballistics gel encasing for the pelvis. Finally, he post-
processed raw surgery data and conducted frequency analysis of the vibrations during reaming to
validate the use of Ballistics gel as a proxy for soft tissue.

3.5 Gunjan Sethi

Gunjan continued development on the Ul module. She setup the basic wireframe of the Ul
on Open3D. She then completed the Image Alignment tool development that is able to display
multiple pointclouds and transform the implant pointcloud using Ul-based controls. Further, she
collaborated with Parker and Sundaram to facilitate the integration of the watchdog module with
the Ul Finally. she worked with Kaushik to calibrate the new end-effector marker and test its
detection and tracking.

4 Plans

For the next progress review, I plan on translating this task prioritization framework from sim-
ulation to reality. This would require some setup, since our physical hardware has also changed
in the past few progress reviews. requiring collaboration with Parker to get the stl files of the new
mechanical design to put into and modify the URDF. After the URDF is updated, we can then test
in reality, and completion of that will open the door for online calibration.

In addition, I will also be working with Sundaram to integrate the controls subsystem with the
Watchdog Module, further defining and implementing an interface between the two subsystems.
And lastly, I will be working with Parker to start developing a controller for the end-effector. First,
we will be collecting data to get a relationship between the force applied and current sent to the
motor. After that, we will be implementing an admittance controller for the end-effector using the
current-force relationship defined earlier. We may also implement a position controller on top of
that. As a stretch goal, I will also be assisting Kaushik with online calibration.

Page 5

	Individual Progress
	Challenges
	Team Work
	Anthony Kyu
	Parker Hill
	Sundaram Seivur
	Kaushik Balasundar
	Gunjan Sethi

	Plans

