
MRSD Project Course

Team I – AIce

Autonomous Zamboni Convoy

Individual Lab Report 1

Team
Rathin Shah

Nick Carcione

Yilin Cai

Jiayi Qiu

Kelvin Shen

Author
Jiayi Qiu

Feb 9, 2022

Contents

1 Individual Progress 1
1.1 Sensor and Motor Lab . 1

1.1.1 Sensor . 1
1.1.2 Motor . 1
1.1.3 Circuit and Code . 2

1.2 MRSD Project . 2

2 Challenges 3
2.1 Sensor and Motor Lab . 3
2.2 MRSD Project . 3

3 Team Work 3
3.1 Sensor and Motor Lab . 3
3.2 MRSD Project . 4

4 Plan 4

5 Quiz 5

A Appendix 7

1 Individual Progress

1.1 Sensor and Motor Lab

In this sensor and motor lab, I designed a circuit and developed a microcontroller program
for a FlexiForce. The FlexiForce sensor serve as a force sensing resistor. Its resistance varies
based on the force apply to it. I did experiments to find the transfer function. The output can
be transferred into physical unit N instead of volts using this transfer function. I wrote code
to control a stepper motor using the physical outputs of the sensor. I integrated the code for
FlexiForce sensor, ultrasonic rangefinder sensor, and the stepper motor. With the integrated
code, the FlexiForce sensor and the ultrasonic rangefinder sensor can control the rotation of the
stepper motor. I used a button to switch which sensor to control the stepper motor. I also applied
filter functions to filer the inputs for both the FlexiForce sensor and the ultrasonic rangefinder
sensor.

1.1.1 Sensor

The force sensor I used in this lab is a FlexiForce standard model A201. It is a force sensing
resistor. When the force sensor is unloaded, its resistance is extremely large. When force is
applied to this sensor, its resistance is reduced. The sensor I used has a force range (0N,4.4N). I
designed a voltage divider circuit using a resistor (R=10KΩ) in series with the force sensor. The
circuit is shown in Figure 1. The circuit divides the 5V between the force sensor and the resistor.
I measure the voltage change of the force sensor using one of the Arduino’s analog inputs. The
analog read is 1023 at 5V. At 0V, it will read 0.

Figure 1: The voltage divider circuit of the FlexiForce sensor

I did experiments by applying different forces on the sensor and record the analog reads.
Then, I found a fitting function using Python. The plot I generated that displays the transfor-
mation between analog reads and the forces is shown in Figure 2. The transfer function is:
y = 0.0315x.

1.1.2 Motor

The motor I used in this lab is a stepper motor. The stepper motor moves 200 steps per
revolution. I used the output of the force sensor to determine the desired movement of the motor.
The force range of the sensor is (0N,4.4N). The movement range of the stepper motor is 0 to 200
steps, which means 0 to 360 degrees. Therefore, I mapped the force sensor outputs to movement
steps. If the desired steps represent a larger angular position than the current position, the motor
will rotate in clockwise to reach the desired position. If the desired steps result a smaller angular

1

Figure 2: The transfer function plot of the FlexiForce sensor

position than the current position, the motor will rotate in counterclockwise to reach the goal
position.

1.1.3 Circuit and Code

In this lab, my team decided to use the FlexiForce sensor and ultrasonic rangefinder sensor
to control the stepper motor. I integrated the code for FlexiForce sensor, ultrasonic rangefinder
sensor, and the stepper motor. A button was designed to determine which sensor was selected
to control the motor. I applied Moving average filters to the inputs of each sensor to reduce
the noise. The integrated circuit is shown in Figure 3. The code I contributed to is shown in
Appendix A.

Figure 3: The integrated circuit for FlexiForce sensor, ultrasonic rangefinder sensor, and the stepper motor

1.2 MRSD Project

In the last fewweeks, I studied how to simulate an Ackermann vehicle in Gazebo and learned
simulation structures. I modified the mesh file of Zamboni links and helped to setup a Zamboni
in the Gazebo. I also built the ice rink simulation environment. The ice rink model is in true size
and has curved corners. The plane ground has the same patterns as a real ice rink. Currently, I am
working on leader trajectory tracking of the follower vehicle. Based on the relative position and

2

the relative heading angle between leader and follower, a simple PID controller can be applied
to maintain the desired distance.

2 Challenges

2.1 Sensor and Motor Lab

The challenge I faced in my own part was to transfer the force sensor data so that the output
is in physical unit N. When using the FlexiForce sensor, I had to make sure all weight I applied
to the sensor is directed onto the small sensing area. Otherwise, I could not determine how
much force I added on the sensor. Therefore, I placed the small sensing area on an electronic
digital scale with a small metal cylinder on the top. The cross section of the metal cylinder was
completely placed inside the sensing area. Then, I added different numbers of metal pieces on
it. In this way, the force I applied to the sensor was shown on the electronic digital scale.

2.2 MRSD Project

I had problems with models when I tried to build the simulation environment. We generated
COLLADA files (.dae) of Zamboni based on the Zamboni Solidworksmodel. These files need to
be used in the Zamboni URDF model for simulation. However, due to extremely large number
of faces and vertices, these COLLADA files were not small enough for Gazebo simulation.
Gazebo got stuck when loading the URDF model. Finally, I used the decimate modifier in
Blender to reduce the number of faces and vertices. The appearance of the final model was well
maintained while its size was greatly reduced. It also challenged me when building the ice rink
world environment. It took me a while to build an ice rink model in true size with curved corners
in Solidworks, wrote sdf files for this model, and wrote a world file for simulation.

3 Team Work

3.1 Sensor and Motor Lab

Each team member’s distributions are shown below:
- Rathin: Designed the circuit and code for a potentiometer to control a servo motor. Wired

a button to switch between GUI control and sensor control.
- Nick: Designed the circuit and code for a IR sensor to control a DCmotor. Wrote PID code

for the DC motor. Wrote button code to switch between position control and velocity control.
Integrated the final circuit.

- Jiayi: Designed a FlexiForce sensor circuit. Wrote code for the FlexiForce sensor to control
a stepper motor. Integrated code for FlexiForce sensor, Ultrasonic sensor and stepper motor.
Wrote button code to switch between these two sensors to control the stepper motor. Wrote the
moving average filter.

- Yilin: Soldered stepper motor driver. Designed the circuit and code for a ultrasonic sensor
to control a stepper motor. Adjusted the current of the stepper motor driver. Integrated the final
circuit.

- Kelvin: Developed a GUI program using ROS. Created custom messages for sensor data
outputs. Programmed to Control the motor outputs through joint states publisher. Integrated
code for sensors and motors with GUI program. Debugged the final code.

The final circuit is shown in Figure 4.

3

Figure 4: Final circuit

3.2 MRSD Project

Each team member’s distributions are shown below:
- Rathin: Developed the Pure Pursuit Controller on Simulink for Ackermann Geometry;

began developing package for fusing IMU + Wheel Odometry for zamboni using ros; began
working on developing the SIMULINK-ROS Interface.

- Nick: Researched methods and packages for fusing wheel encoder and IMU data to obtain
accurate velocity estimation of follower; began looking at DBW conversion hardware.

- Yilin: Built up the simulation environment;created URDF (XACRO) file of the Ackermann
steering Zamboni with sensor and controller plugins; simplified mesh files and colorized them
for better visualization; realized vehicle motion command with keyboard teleoperation; realized
multi-robot spawn in Gazebo and individually control with keyboard teleoperation; completed
Tf tree setup, odometer frame setup and visualization in Rviz.

- Kelvin: Learned cv bridge that communicates between ROS camera topic and OpenCV;
generated a mesh file of a board of ArUco markers with appropriate size; tested the ArUco wall
with Zamboni model inside the Gazebo environment.

- Jiayi: Investigated vehicle simulation in Gazebo; simplified COLLADA files of Zamboni
model using Blender; helped to simulate the Zamboni; built the ice rink simulation environment.

4 Plan

In the next few weeks, we plan to work on sensor fusion for localization of follower in the
world frame. We are going to detect the leader and estimate its pose based on the board of ArUco
markers. I plan to complete the leader trajectory tracking algorithm and generate follower ve-
locity profile. I will also work on ROS node and integrate the algorithm with simulation. We
need to work on waypoint estimation and smooth path generation with zamboni kinematic con-
straints. We will also achieve the communication between ROSMaster andMatlab for Zamboni
Curvature/Steering Controller based on pure pursuit. What’s more, we plan to start working on
hardware as soon as possible. We need to detect the moving leaderZamboni using RealSense
Camera mounted on follower vehicle in the ice rink and get the waypoints in world frame.

4

5 Quiz

1.
(a) The range is ±3g (minimum), ±3.6g (typical).
(b) The dynamic range is 6g (minimum), 7.2g (typical).
(c) The purpose of the capacitor is to reduce the input voltage noise. It does this by filtering

out high-frequency noises from the power supply. The capacitor discharges when the voltage
drops and charges when the voltage increases to make the voltage stable.

(d) Vout = 1.5V + (300mV /g) ∗ a
(e) 0.3% ∗ 7.2g = 0.0216g

The largest expected nonlinearity error in g is 0.0216g.
(f) Bandwidths can be selected to suit the application, with a range of 0.5 Hz to 1600 Hz for

the X and Y axes.
(g) rms Noise = Noise Density × (

√
(BW×1.6)) = 150×(

√
(25×1.6)) = 948.68g

(h) Assume that there is no noise from the power supply. The RMS noise can be determined
by placing the accelerometer on a static surface and recording its readings over a very long du-
ration. The RMS noise can be calculated with equation

√
1
n

∑
i z

2
i , where zi is the reading.

2.
(a)
- Moving average filter:
1) Moving average filter is sensitive to individual large jumps (outliers). An occasional

large number may greatly influence the result.
2) It averages last n values of the sensor inputs. If n is large, there will be a lag behind the

instantaneous data.

- Median filter:
1) Median filter has high computational complexity, because it needs to sort each n-sized

window and take the median value.
2) The median value of the n-sized window can be an outlier itself.

(b)
- Your uncalibrated sensor has a range of−1.5 to 1.0V (−1.5V should give a 0V output and

1.0V should give a 5V output):
1) v2 is the input voltage and v1 is the reference voltage.
2)

vout = (v2 − v1)
Rf

Ri
+ v2

0 = −1.5(1 +
Rf

Ri
)− vref (

Rf

Ri
)

5 = 1(1 +
Rf

Ri
)− vref (

Rf

Ri
)

→Rf

Ri
= 1, vref = −3V

- Your uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V output and
2.5V should give a 5V output):

1) The circuit has no solution.
2) If v1 is the input voltage and v2 is the reference voltage:

vout = −vin(
Rf

Ri
) + vref (1 +

Rf

Ri
)

0 = 2.5(
Rf

Ri
) + vref (1 +

Rf

Ri
)

5

5 = −2.5(
Rf

Ri
) + vref (1 +

Rf

Ri
)

There is no solution.
If v2 is the input voltage and v1 is the reference voltage:

0 = −2.5(1 +
Rf

Ri
)− vref(

Rf

Ri
)

5 = 2.5(1 +
Rf

Ri
)− vref(

Rf

Ri
)

→Rf

Ri
= 0

It’s not possible to calibrate. Thus, the circuit has no solution.

3.
(a) The result of current encoder output minus the desired position can be used for the pro-

portional terms.
The integral terms can be formed by accumulating the error between the current encoder

position and its desired position multiplied this by the timestep.
The derivative term can be formed by dividing the result of previous position minus the

current position by the time step.
(b) I will increase the proportional term. Increase the proportional gain, the rise time can be

decreased. The desired position can be reached in a shorter time.
(c) I will increase the integral term. This will compensate for the accumulated errors and

make the steady state error closer to zero.
(d) I will apply the derivative term. This term will counteract the rate of change of the error.

It can add damping to the system. Therefore, it can reduce the overshoot.

6

A Appendix

d e f i n e window_size 5

/ / F l e x i f o r c e Senso r v a r i a b l e s
i n t f l e x i F o r c e P i n = A0 ;

/ / U l t r a s o n i c Senso r v a r i a b l e s
c o n s t i n t T r i gP i n = 7 ;
c o n s t i n t EchoPin = 13 ;
f l o a t d i s t anceCm ;
i n t d u r a t i o n ;

/ / S t e p p e r Motor v a r i a b l e s
c o n s t i n t s t e p p e r E n a b l e = 6 ;
c o n s t i n t s t e p p e r S t e p = 5 ;
c o n s t i n t s t e p p e rD i r = 4 ;
c o n s t i n t s t e p s P e rR e v o l u t i o n =200;
i n t c u r r e n t S t e p ;

/ / Bu t t on v a r i a b l e s
c o n s t i n t b u t t o n = 0 ;
i n t b u t t o n S t a t e ;
i n t b u t t o n S t a t e _ l a s t = 0 ;
i n t mode_count = −1;
i n t mode= −1;

un s i gned long las tDebounceTime = 0 ;
un s i gned long debounceDelay = 50 ;

/ / F i l t e r f u n c t i o n
i n t s e n s o rRe ad i n g s [window_size] ;
i n t sum = 0 ;
i n t i ndex = 0 ;
i n t Ru n n i n gAv e r a g e _ f i l t e r (i n t r e a d i n g){
sum −= s en s o rRe ad i n g s [i ndex] ;
s e n s o rRe ad i ng s [i ndex] = r e a d i n g ;
sum += s en s o rRe ad i n g s [i ndex] ;
i ndex = (i ndex +1) % window_size ;
r e t u r n sum / window_size ;

}

/ / U l t r a s o n i c Senso r f u n c t i o n
f l o a t U l t r a s o n i c () {

d i g i t a lW r i t e (T r i gP in , LOW) ;
de l ayMic r o s e cond s (2) ;

7

d i g i t a lW r i t e (T r i gP in , HIGH) ;
d e l ayMic r o s e cond s (1 0) ;
d i g i t a lW r i t e (T r i gP in , LOW) ;

d u r a t i o n = p u l s e I n (EchoPin , HIGH) ;
i n t f i l t e r e d _ d u r a t i o n = Runn i n gAv e r a g e _ f i l t e r (d u r a t i o n) ;
d i s t anceCm = f i l t e r e d _ d u r a t i o n / 5 8 . 0 ;
d i s t anceCm = (i n t (d i s t anceCm * 1 0 0 . 0)) / 1 0 0 . 0 ;

S e r i a l . p r i n t (” D i s t a n c e : ”) ;
S e r i a l . p r i n t (d i s t anceCm) ;
S e r i a l . p r i n t (” cm ”) ;
S e r i a l . p r i n t l n () ;
d e l a y (1 0) ;
r e t u r n d i s tanceCm ;

}

/ / F l e x i f o r c e Senso r f u n c t i o n
f l o a t F l e x i f o r c e () {

i n t f l e x i F o r c eR e a d i n g = ana logRead (f l e x i F o r c e P i n) ;
i n t f i l t e r e d _ FFR e a d i n g = Runn i n gAv e r a g e _ f i l t e r (f l e x i F o r c eR e a d i n g) ;

f l o a t f o r c e = 0.0315* f i l t e r e d _ FFRe a d i n g ;
S e r i a l . p r i n t (” F l e x i Force s e n s o r : ”) ;
S e r i a l . p r i n t (f o r c e) ;
S e r i a l . p r i n t l n (”N”) ;
r e t u r n f o r c e ;

}

/ / S t e p p e r Motor f u n c t i o n
vo id s t e p p e r (i n t d e s i r e d S t e p){

i f (d e s i r e d S t e p > c u r r e n t S t e p) d i g i t a lW r i t e (s t e p p e rD i r ,HIGH) ;
e l s e d i g i t a lW r i t e (s t e p p e rD i r ,LOW) ;

f o r (i n t x = 0 ; x < abs (d e s i r e dS t e p − c u r r e n t S t e p) ; x++){
d i g i t a lW r i t e (s t e p p e r S t e p , HIGH) ;
d e l ayMic r o s e cond s (1 0 0 0) ;
d i g i t a lW r i t e (s t e p p e r S t e p , LOW) ;
de l ayMic r o s e cond s (1 0 0 0) ;
}
c u r r e n t S t e p = d e s i r e d S t e p ;

/ / r e t u r n ;
}

vo id s e t u p () {
S e r i a l . b eg in (9 6 0 0) ;
pinMode (T r igP in , OUTPUT) ;
pinMode (EchoPin , INPUT) ;

8

pinMode (s t e p p e rEn ab l e ,OUTPUT) ; / / Enab le
pinMode (s t e p p e r S t e p ,OUTPUT) ; / / S t ep
pinMode (s t e p p e rD i r ,OUTPUT) ; / / Di r
d i g i t a lW r i t e (s t e p p e rEn ab l e ,LOW) ; / / Se t Enab le low
pinMode (bu t t on , INPUT) ;

}

vo id loop () {
S e r i a l . p r i n t l n (mode) ;
b u t t o n S t a t e = d i g i t a l R e a d (b u t t o n) ;
i f ((b u t t o n S t a t e == HIGH) && (b u t t o n S t a t e _ l a s t == LOW)) {
mode_count ++;
mode = mode_count % 2 ;
i f (mode ==0){

S e r i a l . p r i n t l n (” Change t o U l t r a s o n i c Senso r ”) ;
}
i f (mode ==1){

S e r i a l . p r i n t l n (” Change t o F l e x i f o r c e Senso r ”) ;
}

sum = 0 ;
i ndex = 0 ;
memset (s en so rRead i ng s , 0 , s i z e o f (s e n s o rRe ad i n g s)) ;

}

/ / debounc ing
i f (b u t t o n S t a t e != b u t t o n S t a t e _ l a s t) {

d e l a y (5 0) ;
}
/ / upda t e t h e l a s t s t a t e o f Bu t t on 0
b u t t o n S t a t e _ l a s t = b u t t o n S t a t e ;

/ / U l t r a s o n i c Senso r
i f (mode==0){

f l o a t d i s t anceCm = U l t r a s o n i c () ;
i n t d e s i r e d S t e p = round (map (dis tanceCm , 0 , 100 , 0 , s t e p s P e r R e v o l u t i o n)) ;
s t e p p e r (d e s i r e d S t e p) ;

}
i f (mode==1) {

f l o a t f o r c e = F l e x i f o r c e () ;
i n t d e s i r e d S t e p = round (map (f o r c e , 0 , 4 . 4 , 0 , 2 0 0)) ;
s t e p p e r (d e s i r e d S t e p) ;

}

d e l a y (1 0 0) ;
}

9

	Individual Progress
	Sensor and Motor Lab
	Sensor
	Motor
	Circuit and Code

	MRSD Project

	Challenges
	Sensor and Motor Lab
	MRSD Project

	Team Work
	Sensor and Motor Lab
	MRSD Project

	Plan
	Quiz
	Appendix

