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1. Individual Progress 

1.1 Sensors and Motors Lab 

 My main responsibilities for the Sensors and Motors Lab were to wire the circuits and 

develop the code for an IR proximity sensor, DC motor, and switch for changing motor states.   

  I also aided in the integration of the total circuit, especially when it came to debugging and 

troubleshooting any issues that arose with the DC motor. 

1.1.1 IR Sensor 

 The IR sensor used in the lab was a Sharp GP2Y0A21YK IR proximity sensor, which is 

an analog sensor that is nominally capable of measuring in a range of 10-80 cm.  The datasheet 

for this sensor provides a plot detailing the transfer function from distance to voltage.  This plot 

is reproduced in Figure 1 below. 

 

Figure 1: Provided transfer function plot for the Sharp IR proximity sensor[3] 

 As the plot above makes obvious, the signal output by the sensor is nonlinear with respect 

to distance.  The plot itself is also the reverse of what I needed for reading the sensor, providing 

distance-to-volts instead of volts-to-distance.  A source online[1] informed me of an Arduino 

library for using this sensor that would automatically convert voltage to distance for me.  This 

site also provided the equation used to do so.  However, when I tried implementing this equation, 

the results I obtained were wildly off.  As a result, I had to take my own measurements and 

develop my own transfer function for converting the voltage signal to distance.  While taking 

initial measurements, I noticed the signal output by the sensor was very noisy, so I implemented 

a moving average filter to smooth the signal out.  After doing so, I continued to take 

measurements, recording 10 data points at every multiple of 5cm from the reported range of 

10cm to 80cm.  Doing so showed that the valid range of my specific sensor was actually from 

15-80 cm, and that at 10 cm the sensor had yet to reach the peak shown in Figure 1.  After 

collecting all my measurements, I tried fitting multiple curves to the data and selected the curve 

with the highest R2 value.  The data and transfer function I produced are shown in Figure 2 on 

the next page. 
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Figure 2: Transfer function converting voltage to distance for my actual sensor 

 As the plot shows, the range of the sensor was further reduced from 15-80 cm to 15-60 

cm, as the sensor accuracy began to drop outside of this range. 

1.1.2 DC Motor 

 The DC motor was a Cytron SPG30-30K motor.  Since the motor was a 12V motor, 

controlling the motor with an Arduino necessitated the use of an L298 motor driver and an 

external 12V power supply.  The two 12V power leads of the DC motor were connected to 2 of 

the out pins on the motor driver.  The 12V power supply was wired into the positive and negative 

input power terminals on the driver.  The Arduino was then connected to the driver by 

connecting two digital output pins to inputs 1 and 2 of the motor driver and connecting an analog 

output pin with pulse width modulation (PWM) capability to the enable pin of the driver.  Doing 

so allowed me to control the speed and direction of the motor according to the following logic 

table presented in Figure 3.  By sending a higher PWM signal, the motor would move faster. 

 

Figure 3: Logic table for controlling speed and direction of DC motor[4] 

The motor came with an encoder included in it.  The encoder was given 5V power and 

ground from the Arduino and the encoder itself was wired to pins 2 and 3 of the Arduino.  An 
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external library for handling encoders was used to read the number of tics sent by the encoder.  

The library recommended that the leads be connected to pins with an interrupt for the best result; 

on the Arduino Uno, these are pins 2 and 3.  The encoder defined one tic as completion of 1-4 in 

Figure 4 below.  However, the encoder library counted each one of these phases as a single tic.  

Multiplying the reported number of tics per revolution from the datasheet (90) by 4 resulted in 

360 tics per revolution, or 1° per tic; this result was confirmed through visual inspection. 

 

Figure 4: Encoder waveforms[2] 

The DC motor was outfitted with PID control so that both the position and speed of the 

motor could be set to a user specified value.  Using the tics to define the angular position of the 

motor, the error in position (or speed) was calculated and used in a PID controller to generate a 

PWM signal that would drive the motor to the desired position (or speed).  The friction present in 

the motor restricted the range of PWM signals that could be sent to the motor.  Anything below a 

PWM threshold of ~90-100 would not provide enough power to overcome the static friction 

forces.  As a result, the motor could not reach speeds below 80 rpm.  This also resulted in the 

motor being unable to perfectly reach the desired position since small, slow adjustments were 

impossible; instead, a positional “dead band” was defined that shut off PID control when the 

motor got close enough to the desired position. 

 Finally, the motor was interfaced with the IR proximity sensor.  The distance returned by 

the sensor was mapped to a PWM signal such that as the distance measured decreased, the motor 

speed would slow down.  This was meant to mimic a vehicle stopping as it neared an obstacle or 

pedestrian. 

1.1.3 Button 

 The push button that I added to the circuit was used to switch the motor between position 

and velocity control when the motor is being controlled by the GUI.  The button was debounced 

using a simple delay of 40 milliseconds that began when the state first transitioned from low to 

high. 

1.1.4 Circuit and Code 

 A schematic of the complete sensor-motor-button circuit that I developed is shown in 

Figure 5a on the next page.  The team’s fully integrated circuit is shown alongside it in Figure 5b 

on the next page.  The code that I wrote to read the IR sensor, control the DC motor, and handle 

the button functionality is reproduced in Appendix B.  This code was developed without the GUI 

and therefore uses the Arduino serial monitor for user input and information output. 
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Figure 5: (a) on the left, a schematic of the sensor-motor-button circuit created; (b) on the right, a 

picture of the fully integrated circuit including (a) [photo courtesy of Rathin] 

1.2 MRSD Project 

 My progress on the project so far has been split between helping to build out the 

simulation and preparing for future hardware integration.  For the simulation, I have researched 

methods for obtaining accurate estimates of the follower Zamboni’s linear and angular velocities.  

Since the Zamboni will be operating indoors in an arena, it was required that the method I chose 

did not rely on GPS data for calculating or correcting the estimate.  After conducting some 

research, I identified the “robot_localization” package that has been developed for ROS.  This 

package is capable of fusing data from any arbitrary number of sensors using a Kalman filter.  

The package supports a wide variety of sensors and data types including IMU data and wheel 

encoders. 

 On the hardware side, I have begun identifying potential components that will be useful 

in converting the Zamboni into a drive-by-wire platform.  Currently, some functions of the 

Zamboni that we wish to control (i.e., steering and braking) are powered hydraulically instead of 

electrically.  I have been able to find some potential solutions to these problems.  One of these is 

an electro-hydraulic steering valve that can attach to the back of the steering wheel and take 

electrical input to change the pressure in the hydraulic steering lines.  I have also begun to look 

into smaller platforms that the team can use for live demonstrations in the event that we either 

don’t receive the Zamboni or receive the Zamboni too late to integrate our sensors and 

controllers with it. 

2. Challenges 

2.1 Sensors and Motors Lab 

 As described above, converting the output of the IR proximity sensor to an accurate 

distance proved to be an unexpected challenge due to the inaccuracy of the sensor’s datasheet. 

12V Power 
Supply 

DC Motor 

Motor Driver 

IR Sensor 

Button 

Button 
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 An even bigger challenge was combining the individual sensor-motor circuits into one 

final circuit that interfaced with the GUI.  Since the individual circuits were wired separately, 

many of the GPIO pins on the Arduino Uno were used by multiple components; this required 

shifting pins around while keeping track of what moved where and what needed pulse-width-

modulation capability.  The GUI posed an even bigger challenge.  ROS was used to interface 

with the Arduino, and simply initializing the necessary ROS nodes used up 70-80% of the 

Arduino Uno’s memory.  This caused the code to not upload to the board at times, increased the 

amount of lag in the system, and decreased performance of the sensors and motors.  Replacing 

the Uno with an Arduino Mega provided plenty of memory space and solved these issues. 

2.2 MRSD Project 

 The most significant challenge I have faced with respect to the project is a lack of access 

to and information about the Zamboni that we will be using.  Without these, developing accurate 

models of the odometry sensors, and thus an accurate simulation, is difficult.  The 

robot_localization package requires covariance matrices for these sensors to be tuned, and 

without real information about their performance, the accuracy of the simulation is not 

guaranteed.  This also makes selecting hardware difficult since the exact sizes and dimensions of 

parts of the Zamboni are largely unknown.  We hope to have a conversation with our sponsors 

and representatives from Zamboni to get a better understanding of the Zamboni and how we can 

adapt it to meet our purposes.  Another challenge regarding the Zamboni is that it is currently not 

designed to be a drive-by-wire platform, so additional work must be done to find and integrate 

hardware that will make it possible to control it electronically. 

3. Teamwork 

3.1 Sensors and Motors Lab 

 The work for this lab was divided equally so that four of the five members developed 

code and circuits for a sensor-motor pair, and the fifth member developed the GUI for interfacing 

with the complete circuit.  The individual contributions of the rest of the team are summarized 

below. 

Rathin Shah 

 Rathin worked with the potentiometer and the RC servo motor.  He also assisted in 

integrating, debugging, and testing the final circuit. 

Yilin Cai 

 Yilin worked with the ultrasonic rangefinder and the stepper motor.  He was also in 

charge of integrating the circuit components together and cleaning up the wiring 

Jiayi Qiu 

 Jiayi worked with the FlexiForce sensor and the stepper motor.  She also integrated the 

code for the FlexiForce sensor, ultrasonic rangefinder, and stepper motor and developed 
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debouncing code for a button that would switch the control of the stepper motor between the 

FlexiForce sensor and ultrasonic rangefinder. 

Kelvin Shen 

 Kelvin developed the GUI that interfaced with all the different sensors in motors in the 

final circuit.  He also took primary responsibility in integrating everyone’s code together and 

testing the final circuit. 

3.2 MRSD Project 

Rathin Shah 

 Rathin has started work on developing the controls for the Zamboni in Simulink, 

including creating a pure pursuit controller that utilized Ackermann steering.  Developing the 

pure pursuit controller in MATLAB and Simulink has also led him to research how to connect 

Simulink to a ROS node.  Finally, Rathin has worked alongside of me on learning and 

implementing the robot_localization package for velocity estimation. 

Yilin Cai 

 Yilin has overseen the creation and maintenance of the Zamboni convoy simulation in 

ROS and Gazebo.  He has created a model of the Zamboni in Gazebo that is equipped with 

sensors (camera, lidar, IMU, encoders) and can be teleoperated by keyboard.  He has further 

extended the Gazebo simulation to work with two Zambonis to replicate the intended use case. 

Jiayi Qiu 

 Jiayi has assisted in developing the Zamboni simulation in Gazebo.  She has also created 

an environment in Gazebo which mimics the size, shape, and appearance of a hockey rink. 

Kelvin Shen 

 Kelvin has worked on developing the perception capabilities of the follower Zamboni.  

This has included learning how to use cv_bridge to communicate between a ROS camera topic 

and OpenCV.  He has also generated and tested a board of ArUco markers in Gazebo so that they 

can later be used to determine the pose and position of the leader Zamboni. 

4. Plans 

4.1 Sensors and Motors Lab 

 The control of the DC motor using the IR proximity sensor serves as a precursor to part 

of the safety system that will be included on the autonomous follower Zamboni.  In a similar 

fashion to how the DC motor slowed down as it detected objects getting closer, the Zamboni will 

slow down and, if needed, stop if it detects an obstacle or a person within a certain range.  While 

the exact components will not be the same (e.g., lidar and a vision system instead of an IR 

proximity sensor), the general concept will be carried over. 
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4.2 MRSD Project 

 In the coming weeks, the team as a whole plans on wrapping up development on a basic 

simulation of the autonomous Zamboni convoy.  To help reach this goal, I plan on implementing 

the robot_localization package in ROS with the goal of obtaining accurate velocities from the 

IMU and wheel encoders on the follower Zamboni.  Further to this end, I will also begin 

researching methods for estimating the velocity of the leader Zamboni based on the perception 

sensors that will be on board the follower (RGBD camera, lidar).  In preparation for eventual 

integration with a physical Zamboni, I will continue to identify and specify the hardware 

necessary to add drive-by-wire functionality to the provided Zamboni. 

5. Sources 

[1] B. De Bakker, “How to use a SHARP GP2Y0A21YK0F IR Distance Sensor with Arduino,” 

Makerguides, 2021. [Online]. Available: How to use a SHARP GP2Y0A21YK0F IR Distance 

Sensor with Arduino. [Accessed: 28-Jan-2022]. 

[2] Cytron Technologies, “DC Geared Motor with Encoder,” MO-SPG-30E-XXXK User’s 

Manual V1.1, May 2011. 

[3] Sharp, “GP2Y0A21YK/GP2Y0D21YK General Purpose Type Distance Measuring Sensors”. 

[4] Solarbotics, “The Compact L298 Motor Driver,” Revised 5 Jan. 2022. 
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Appendix A: 

Sensors and Motor Control Quiz 
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1. Reading a datasheet. Refer to the ADXL335 accelerometer datasheet 

(https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf) to answer the below 

questions. 

o What is the sensor’s range? 

±3.6g (using typical value) 

o What is the sensor’s dynamic range? 

7.2g (based on typical value) 

o What is the purpose of the capacitor CDC on the LHS of the functional block diagram on p. 1? 

How does it achieve this? 

The capacitor CDC is meant to decouple the accelerometer from noise on the power 

supply.  The capacitor achieves this both by absorbing any excess voltage supplied by the power 

supply and by discharging to power the accelerometer when the supplied voltage drops.  

o Write an equation for the sensor’s transfer function. 

𝑉 =  (300 
𝑚𝑉

𝑔
) ∗ 𝑎 +  1.5 𝑉 

𝑤ℎ𝑒𝑟𝑒 a𝑖𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 [𝑔] 

𝑎𝑛𝑑 𝑉 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑖𝑛 [𝑉] 

o What is the largest expected nonlinearity error in g? 

±0.3% of F.S.O. = ±0.3% * 7.2g = ±0.0216g 

o What is the sensor’s bandwidth for the X- and Y-axes? 

0 Hz to 1600 Hz 

o How much noise do you expect in the X- and Y-axis sensor signals when your measurement 

bandwidth is 25 Hz? 

𝑟𝑚𝑠 𝑛𝑜𝑖𝑠𝑒 = 𝑁𝑜𝑖𝑠𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗  √𝐵𝑊 ∗ 1.6 = 150 
𝜇𝑔

√𝐻𝑧
∗ √25 𝐻𝑧 ∗ 1.6 = 949 𝜇𝑔

= 0.000949 𝑔 

o If you didn’t have the datasheet, how would you determine the RMS noise experimentally? 

State any assumptions and list the steps you would take. 

To measure the RMS noise experimentally, the accelerometer would be placed on a 

stationary, level surface with an assumed 0g of acceleration in all three directions.  The 

acceleration measurements would then be recorded at a rate of 25 Hz for some arbitrary amount 

of time (e.g., 10 seconds).  The resulting data points would be individually squared before being 

summed together.  This sum would then be divided by the number of samples and square rooted 

to yield the RMS noise.  This calculation would be done separately for each direction. 

 

2. Signal conditioning 

o Filtering 

▪ Name at least two problems you might have in using a moving average filter. 

1. A moving filter might introduce lag into a sensor, especially if the averaging window is 

large. 

2. A moving filter is susceptible to outliers.  A single value that is much larger or smaller than 

the other values in the window can cause the reported average to be dragged up or down as 

long as the outlier is in the averaging window. 

https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf
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▪ Name at least two problems you might have in using a median filter. 

1. If the window size of the median filter is not large enough or the data that are being filtered 

have a high frequency of outliers, the median filter may fail to filter out the outliers as 

desired. 

2. Using a median filter requires storing previous inputs and generating multiple sorted 

windows for finding the medians.  As a result, median filtering takes up extra space in 

memory and adds to the run time of the program. 

o Opamps 

• In the following questions, you want to calibrate a linear sensor using the circuit in Fig. 1 so 

that its output range is 0 to 5V. Identify in each case: 1) which of V1 and V2 will be the input 

voltage and which the reference voltage; 2) the values of the ratio Rf/Ri and the reference 

voltage. If the calibration can’t be done with this circuit, explain why. 

• Your uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a 0V output and 

1.0V should give a 5V output). 

Input voltage: V2 

Reference voltage: V1 

Rf/Ri = 1 

Reference voltage = -3V 

•  Your uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V output and 

2.5V should give a 5V output). 

The desired calibration cannot be done with this circuit.  Since the dynamic range 

of the input is already the same as that of the output (-2.5V →2.5V = 5V and 0V 

→5V = 5V), using V2 as the input voltage necessitates a resistance ratio of 0.  

This, however, makes it impossible to solve for the reference voltage or have the 

needed offset.  Furthermore, using V1 as the input voltage is also impossible, as 

doing so inverts the input voltage.  This causes an input of -2.5V to be mapped 

towards 5V and an input of 2.5V to be mapped toward 0V, opposite of what is 

desired.  The only way to fix this is with a negative resistance ratio, which is not 

physically possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Opamp gain and offset circuit 
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3. Control 

o If you want to control a DC motor to go to a desired position, describe how to form a digital 

input for each of the PID (Proportional, Integral, Derivative) terms. 

Proportional (P): The input for the proportional term would be the error or difference between the 

desired position of the DC motor and the current position of the motor as reported by a motor 

encoder. 

Integral (I): The input for the proportional term would be the sum of all the errors between the 

desired and actual motor positions multiplied by the timestep. 

Derivative: The input for the derivative term would be the difference between the current and 

previous errors in motor position divided by the timestep. 

 

o If the system you want to control is sluggish, which PID term(s) will you use and why? 

The proportional (P) term would be increased.  Doing so causes the control input to be greater for 

a given error, making the system more aggressive and decreasing the rise time. 

 

o After applying the control in the previous question, if the system still has significant steady-state 

error, which PID term(s) will you use and why? 

The integral (I) term would be used.  The integral term of the controller takes into account the 

integral (sum) of the error.  When the system reaches steady-state ad still has a significant error, 

the integral term will continually grow larger and eventually push the system to the desired 

steady-state value. 

 

o After applying the control in the previous question, if the system still has overshoot, which PID 

term(s) will you apply and why? 

The derivative (D) term would be applied.  The derivative term acts as a virtual damper on the 

system and reduces overshoot in the controlled system.  Mathematically, this is because the 

derivative term incudes the derivative of the error.  As the system approaches the desired value 

and the error decreases, the derivative term applies a control signal opposite that of the 

proportional term, thereby damping the system. 
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Appendix B: 

Arduino Code for IR Sensor & DC Motor 
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#include <Encoder.h> 

 

//########################IMPORTANT######################## 

//Some general notes about motor speeds/directions 

//IN_1 = LOW, IN_2 = HIGH makes encoder tics increase (go +) (CCW) 

//IN_1 = HIGH, IN_2 = LOW makes encoder tics decrease (go -) (CW) 

//Setting ENABLE_PWM to 0 or LOW causes motor to stop 

//--------------------------------------------------------- 

//When using program with serial monitor, must set to "No Line Ending" option 

//Otherwise, an extra "1" is sent for each command and DC motor does not respond correctly 

//######################################################### 

 

//Declare input and output pins 

const int IR_SENSOR = A1;             //For reading the IR sensor 

const int ENCODER_PIN_1 = 2;          //One of the two DC motor encoder pins 

const int ENCODER_PIN_2 = 3;          //The other DC motor encoder pin 

const int BUTTON = 11;                //Button for switching between position and velocity control 

const int IN_1 = 12;                  //Input 1 of the H bridge 

const int IN_2 = 8;                   //Input 2 of the H bridge 

const int ENABLE_PWM = 10;            //Enable pin of the H bridge 

 

const int MAX_PWM_PULSE = 255;        //The maximum value PWM can be 

const int MIN_PWM_PULSE_POS = 107;    //The minimum PWM value that can be used to move the motor in 

position control 

                                      //Otherwise, the motor cannot overcome friction and does not move 

const int MIN_PWM_PULSE_SPEED = 90;   //The minimum PWM value that can be used to move the motor in 

velocity control 

                                      //Otherwise, the motor may not overcome friction and not move 

const int MAX_POS_WINDUP = 2000;      //Set limits on the error sum (I term) of the position PID controller to 

avoid windup 

const int MAX_SPEED_WINDUP = 2000;    //Set limits on the error sum (I term) of the velocity PID controller to 

avoid windup 

const int POSITION_DEADBAND = 10;     //How many +/- degrees the motor will get within of the desired 

position 
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int sensor_cont = 1;                  //Used for switching between user controlled and sensor control 

                                      //Swapped by hand for testing purposes (replaced by dedicated GUI on/off button in final 

circuit) 

bool control_Pos = true;              //Used for deciding if motor in position or velocity control; default to position 

bool old_button;                      //Used for switch debouncing; holds previous button state 

bool new_button;                      //Used for switch debouncing; holds current button state 

 

//Create an Encoder object for built in encoder handling 

Encoder encoder(ENCODER_PIN_1, ENCODER_PIN_2); 

 

//Variables for moving average filter 

const int MOV_AVG_WINDOW_SIZE = 5; 

int moving_avg_arr[MOV_AVG_WINDOW_SIZE]; 

int moving_avg_val = 0; 

 

//PID controller variables for position controller 

int set_pos; 

long input_pos; 

double kp_p=0.001, ki_p=0.001, kd_p=5; 

int e_pos_sum = 0; 

int e_pos_last = 0; 

 

//PID controller variables for speed controller 

double input_speed, set_speed; 

double kp_s=0.35, ki_s=0.001, kd_s=0.15; 

int e_speed_sum = 0; 

int e_speed_last = 0; 

 

//Change the motor direction depending on the position error 

//In the case of velocity control, change direction depending on sign of desired velocity 

void toggleMotorDirection(int error) 
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{ 

  if (error > 0) 

  { 

    digitalWrite(IN_1, LOW); 

    digitalWrite(IN_2, HIGH); 

  } 

  else if (error < 0) 

  { 

    digitalWrite(IN_1, HIGH); 

    digitalWrite(IN_2, LOW); 

  } 

} 

 

//PID controller for position control 

//Calculates error between desired and current position and converts that 

//into a suitable and feasible PWM pulse 

int calcPIDPos(long actual_pos, int des_pos) 

{ 

  int e_pos = des_pos - actual_pos; 

  int pwm_pulse = 0; 

  toggleMotorDirection(e_pos); 

  if (abs(e_pos) > POSITION_DEADBAND) 

  { 

    pwm_pulse = abs(kp_p*e_pos + ki_p*e_pos_sum + kd_p*(e_pos - e_pos_last)); 

    e_pos_last = e_pos; 

    e_pos_sum += e_pos; 

    if (pwm_pulse > MAX_PWM_PULSE) 

    { 

      pwm_pulse = MAX_PWM_PULSE;  

    } 

    else if (pwm_pulse < MIN_PWM_PULSE_POS) 

    { 
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      pwm_pulse = MIN_PWM_PULSE_POS; 

    } 

  } 

 

  if (e_pos_sum > MAX_POS_WINDUP) 

  { 

    e_pos_sum = MAX_POS_WINDUP; 

  } 

  else if (e_pos_sum < -MAX_POS_WINDUP) 

  { 

    e_pos_sum = -MAX_POS_WINDUP; 

  } 

 

  return pwm_pulse; 

} 

 

//PID controller for velocity control 

//Calculates error between desired and current velocity and converts that 

//into a suitable and feasible PWM pulse 

int calcPIDSpeed(double actual_speed, double des_speed, int prev_pulse) 

{ 

  int e_speed = des_speed - actual_speed; 

  int pwm_pulse = prev_pulse; 

    if (des_speed > 0) 

    { 

      pwm_pulse = prev_pulse + kp_s*e_speed + ki_s*e_speed_sum + kd_s*(e_speed - e_speed_last); 

    } 

    else if (des_speed < 0) 

    { 

      pwm_pulse = prev_pulse - (kp_s*e_speed + ki_s*e_speed_sum + kd_s*(e_speed - e_speed_last)); 

    } 

    e_speed_last = e_speed; 
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    e_speed_sum += e_speed; 

    if (pwm_pulse > MAX_PWM_PULSE) 

    { 

      pwm_pulse = MAX_PWM_PULSE;  

    } 

    else if (pwm_pulse < MIN_PWM_PULSE_SPEED) 

    { 

      pwm_pulse = MIN_PWM_PULSE_SPEED; 

    } 

 

  if (e_speed_sum > MAX_SPEED_WINDUP) 

  { 

    e_speed_sum = MAX_SPEED_WINDUP; 

  } 

  else if (e_speed_sum < -MAX_SPEED_WINDUP) 

  { 

    e_speed_sum = -MAX_SPEED_WINDUP; 

  } 

  return pwm_pulse; 

} 

 

//Switches between position and velocity control when button is pressed 

//Stops the motor when state is switched to avoid side effects 

void stateToggle() 

{ 

  if (control_Pos) 

  { 

    analogWrite(ENABLE_PWM, 0); 

    control_Pos = false; 

  } 

  else 

  { 
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    analogWrite(ENABLE_PWM, 0); 

    control_Pos = true; 

    encoder.write(0);             //Resets the current 0 position to where the motor currently is 

  } 

} 

 

//Calculates the average the moving average array 

int getAverage(int arr[]) 

{ 

  int avg = 0; 

  for (int j=0; j<MOV_AVG_WINDOW_SIZE; ++j) 

  { 

    avg += arr[j]; 

  } 

  avg /= MOV_AVG_WINDOW_SIZE; 

  return avg; 

} 

 

//Populates the moving average array with sensor readings when the program first runs 

void initMovingAverage() 

{ 

  for (int i=0; i<MOV_AVG_WINDOW_SIZE; ++i) 

  { 

    moving_avg_arr[i] = analogRead(IR_SENSOR); 

  } 

  moving_avg_val = getAverage(moving_avg_arr); 

} 

 

//Applies a moving average filter to the IR sensor readings and returns the filtered value 

//The moving average array is updated for each input received from the sensor 

int filterInput(int input) 

{ 
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  moving_avg_val = getAverage(moving_avg_arr) + (1/MOV_AVG_WINDOW_SIZE) * (input - 

moving_avg_arr[0]); 

  for (int k=MOV_AVG_WINDOW_SIZE-1; k>0; --k) 

  { 

    moving_avg_arr[k] = moving_avg_arr[k-1]; 

  } 

  moving_avg_arr[0] = input; 

  return moving_avg_val; 

} 

 

//Reads in the analog value from the IR sensor 

//Filters the IR sensor reading 

//Converts the filtered sensor reading to volts 

//Finally, converts from volts to distance (in cm) and returns the distance 

float readIR(){ 

  int ir_reading = analogRead(IR_SENSOR); 

  int in = filterInput(ir_reading); 

  float volt = in * (5.0 / 1023.0); 

  float dist = 125.77 * exp(-0.768 * volt); 

  return dist; 

} 

 

void setup() { 

  //Begin the Serial monitor (serial monitor used for testing/without GUI) 

  Serial.begin(9600); 

  //Declare the pin modes as appropriate 

  pinMode(IR_SENSOR, INPUT); 

  pinMode(ENCODER_PIN_1, INPUT_PULLUP);   //Enable internal pullup resistor on encoder pin for better 

readings 

  pinMode(ENCODER_PIN_2, INPUT_PULLUP);   //Enable internal pullup resistor on encoder pin for better 

readings 

  pinMode(IN_1, OUTPUT); 

  pinMode(IN_2, OUTPUT); 
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  pinMode(ENABLE_PWM, OUTPUT); 

  pinMode(BUTTON, INPUT); 

  digitalWrite(BUTTON, HIGH);  

  old_button = digitalRead(BUTTON);   

 

  //Initialize starting values of controlled variables to 0 

  input_pos = 0; 

  set_pos = 0; 

  input_speed = 0; 

  set_speed = 0; 

 

  //Initialize the moving average array 

  initMovingAverage(); 

 

  //Turn motor off 

  analogWrite(ENABLE_PWM, 0); 

  digitalWrite(IN_1, LOW); 

  digitalWrite(IN_2, LOW); 

} 

 

//Set up global variables for calculating speed of motor 

long oldPosition = 0; 

long newPosition = 0; 

unsigned long oldTime = millis(); 

int last_output = 0; 

 

void loop() { 

  //Read IR sensor and print measured distance to serial monitor for validation 

  Serial.print("Distance:  "); 

  float ir_value = readIR(); 

  Serial.print(ir_value); 

  Serial.println(" cm"); 
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  //Check to see if the button has been pressed using simple delay debouncing 

  //Switch between position and velocity control if it has been pressed 

  new_button = digitalRead(BUTTON); 

  if (new_button != old_button) 

  { 

    if (new_button == HIGH) 

    { 

      stateToggle(); 

    } 

    delay(40); 

    old_button = new_button; 

  } 

 

  if (sensor_cont == 1) 

  { 

    //Use the IR sensor to control the speed of the motor 

    //The closer the object gets, the slower the motor spins 

    //Meant to mimic vehicle stopping to avoid hitting pedestrian 

    //If no obstacle is detected (outside the 60 cm range of sensor), go full speed 

    digitalWrite(IN_1, LOW); 

    digitalWrite(IN_2, HIGH); 

    int output_pwm = map(ir_value, 15, 60, MIN_PWM_PULSE_SPEED, MAX_PWM_PULSE); 

    constrain(output_pwm, MIN_PWM_PULSE_SPEED, MAX_PWM_PULSE); 

    Serial.println(output_pwm); 

    analogWrite(ENABLE_PWM, output_pwm); 

  } 

  else 

  { 

    //Use the serial monitor to input desired positions and speeds 

    if (control_Pos) 

    { 
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      //implement PID control on the position of the motor 

       

      //Read in desired position from serial monitor if user has specified one 

      if (Serial.available() > 0) 

      { 

        set_pos = Serial.parseFloat(); 

      } 

 

      //Read the current position of the motor and use this to find a PID calculated PWM signal 

      //to move the motor as appropriate 

      //Prints out the current position for validation 

      long input_pos = encoder.read(); 

      int output_pwm = calcPIDPos(input_pos, set_pos); 

      analogWrite(ENABLE_PWM, output_pwm); 

      Serial.print("Position:  "); 

      Serial.println(input_pos); 

    } 

    else 

    { 

      //Implement PID control on the speed of the motor.  Motor can rotate at speeds between 80 - 130 rpm in either 

direction 

 

      //Read in desired speed from serial monitor if user has specified one 

      if (Serial.available() > 0) 

      { 

        set_speed = Serial.parseFloat(); 

      } 

 

      //Calculate the current speed of the motor using the difference in tics 

      //and time between the current and previous iteration of loop(0 

      //Change the motor direction depending on desired speed direction (+ or ) 

      unsigned long newTime = millis(); 
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      float timeElapsed = (newTime - oldTime) / 1000.0; 

      long newPosition = encoder.read(); 

      float input_speed = (newPosition - oldPosition) / timeElapsed; 

      input_speed = input_speed * 60.0 / 360.0; 

      toggleMotorDirection(set_speed); 

 

      //Use the current and desired speed and the previous PWM pulse to find 

      //the next PWM pulse.  Send that pulse to the motor. 

      //Stop the motor if desired speed is 0 rpm 

      int output_pwm = calcPIDSpeed(input_speed, set_speed, last_output); 

      if (set_speed == 0) 

      { 

        output_pwm = 0; 

      } 

      analogWrite(ENABLE_PWM, output_pwm); 

      //Update previous times, positions, and PWM pulse values 

      oldTime = newTime; 

      oldPosition = newPosition; 

      last_output = output_pwm; 

      //Print speed for validation 

      Serial.print("Speed:  "); 

      Serial.println(input_speed); 

      delay(100);                   //Delay helps performance of speed control (gives more time to elapse, 

                                    //more tics to count) 

    } 

} 

} 


