el

ROBOTICS
INSTITUTE

MRSD Project Course

Team I — Alce

Autonomous Zamboni Convoy

Individual Lab Report 1

ANIC o

Team
Rathin Shah
Nick Carcione
Yilin Cai
Jiayi Qiu
Kelvin Shen

Author
Kelvin Shen

Feb 6, 2022

Table of Contents

10T [V 0 [T0e |l o e T [=X PP 2
Sensor and MOtOrs Lab.........cceueieieeiieiiiiieieiiimieieieieiiinieieieisieieisieisisesesesesesisssesssasssssssssssasasassasaaa... 2
(€16 1 PSPPSR UPP PRI 2

LN =T =4 = Ao o [P PP PPPPP PPN 4
Autonomous Zamboni CONVOY Project......ccccciiieuiiiiieuieiiieniiiiiiaiiiiiseseiisseiisssssiisssssisssssssssssss 4
CRGIIBNGES .. .eeeneeeeeeeeeeeereueeeeieteueereneeensseseaesensesenssessssessasesenssessssesensssssssesensessnssessnsessnssssnssesen 5
Sensor and MOotOrs Lab.......cooiiiiieeuiiiiiiiiiiiicirrre e 5
Autonomous Zamboni CONVOY Project......ccccciiieuiiiiieniiiiieniiiiimmieiieseiimsseiissssiisssiissssmsssssns 5
LI L 1oL N 6
Sensors and MOtOrs Labooeeeeeuuiiiiiiiiiieiiiiirrrete e s 6
Autonomous Zamboni CONVOY Project......ccccciiieuiiiiieniiiiieniiiiimaiieiiraeiimsseiissssiisssiisssssssssns 6
o N 6
[0 17 72 7
ATAUINO PIrOGIOMeeueeeneeeeneeererereenereuseetsaseseasessussessssessssessassssnsssssssessssssssssssssssssssessassssnssssen 9

RESFEIEOINCEcceueeeeeeeeiieiieiiiiiiiieietiietinieteeeseesessessssnsssssesessesssssssessmsssssssssssssnsnssssnsssssnssnsnnnns 16

Individual Progress

Sensor and Motors Lab

In this lab, we are required to demonstrate the use of a GUI and sensor input to an Arduino board
to control motors. My responsibility in this lab includes setting up a screen-based GUI to
interface between Arduino and ROS, as well as integrating every team member’s motor and
sensor control code into a single Arduino program. Our final deliverable is shown in Figure 1.

Figure 1. Final Product

GUI

There are a few options to implement a screen-based GUI for this lab. | chose ROS because of
the following reasons:

(1) Every member in our team is getting familiar with ROS over the past winter break and now
we are all in the stage when a lot of practice is needed to solidify what we’ve learned.

(2) ROS takes up a significant part in the upcoming Programming Familiarization assignment,
this is a great opportunity to get hands-on experience with ROS topics.

(3) The other alternatives won’t be useful for our capstone project as we will definitely use ROS
to be the major platform.

(4) ROS comes with a handful of centralized GUI tools such as RViz.

Therefore, | implemented our GUI based on RViz to visualize the three motors, as well as RQT
plots to visualize the readings from the sensors. First of all, to establish the communication
between ROS and Arduino, I used the “rosserial arduino” package, which allows me to connect
to an Arduino to the ROS runtime graph, all through a NodeHandle initialized inside the Arduino
code. Then we can publish to a topic or subscribe to a topic just as how we do in roscpp.

For our lab, I created a publisher that publishes the readings from our sensors (ultrasonic sensor,
Flex force sensor, IR sensor, and potentiometer) to ROS so that we can visualize those readings
in RQT plots. There are existing messages that can satisfy our needs but the naming of the data
types in those messages is confusing. Therefore, we decided to create our own message, named
“sensors.msg” with the structure shown in Figure 2. In our Arduino
program, we update each variable of the message whenever we
analogRead the reading from a sensor, and we publish the message :t:tg: ;:ex
through the publisher during each loop. 5 float64 ultra

Figure 2. Contents of sensors.msg
To manipulate the state of the motors via the GUI, | override the sensor feedback loop and
inserted control values to motors directly from ROS. To do this, | created a URDF file for three
motors, each being consisted of a base link, a shaft link, and a revolute joint between two links.
We can now control the angles of three motors by using the sliders inside Joint State Publisher
GUI from ROS, while visualizing the angles by opening the URDF file inside RViz. As shown in
Figure 3, | have drawn three simplified models to represent our three motors, servo motor in
blue, stepper motor in black, and the DC motor in white. In the Joint State Publisher GUI,
servo_angle specifies the angle of the servo motor, stepper_angle specifies the angle of the
stepper motor, dc_angle specifies the position of the DC motor (indicating position control in the
motor control code), and dc_velocity specifies the velocity of the DC motor (indicating velocity
control in the motor control code). Given these four values from the GUI, | created the subscriber
in our Arduino program, which listens to the topic “joint_states” and invokes callback to actually
send control values or commands to the motors. Inside the callback function, angles retrieved
from sensor_msgs:JointState are converted to motors’ inputs respectively. For example,
servo_angle is converted to degrees as input to the servo motor, stepper_angle is proportionally
converted to steps as input to the stepper motor, and dc_angle and dc_velocity is converted to
PWM as input to the DC motor via the corresponding position or velocity control.

uint16 button
float64 pot

S W N =

motors.rviz[*] - RViz DT -ox
Eile Panels Help

1'_] Interact] Move Camera [select Focus Camera Measure # 20 Pose Estimate /2D Nav Goal @ Publish Point

Joint_state_publisher_gul

Randomize

Center

© Time
Figure 3. Joint State Publisher GUI that specifies angle or velocity of each motor

To plot the sensor readings, | used the Plot plugin in RQT. By echoing the topic where the
custom sensors message is published, I plotted the button state along with four sensors’ readings
in RQT. The final RQT window (with Rviz embedded) is shown in Figure 4. Screen-based GUI
for Sensors and Motors Lab. The five plots around the Rviz window correspond to the four
sensors’ readings plus the state of the button that decides motor control by either the joint state

Joi

DS - 0% Ematplot (3) D @ - 0x @mPyQtGraph (2) D@ -ox
¥ autoscroll # | Topicxsors_readings/ultra | i | we- ¥ autoscroll

eeeeee

0
9.8 95.0 952 %44 %6 %48 %50 %52 242 944 %6 4.8

Figure 4. Screen-based GUI for Sensors and Motors Lab
publisher or the sensor output.

Integration

| integrated three Arduino programs (each controlling a motor with one or two sensors) and my
own GUI program into a single one. | managed to understand the logic behind each program so
that there was not any collision of variables or functions. During integration, | added a program
for one motor to GUI and tested it thoroughly before adding another one, which was actually the
time when we found most errors and spent dozens of hours debugging the hardware. That is,
each motor control program would work without issues if run alone, but when integrated with
other programs, problems frequently occurred due to memory constraint on Arduino UNO, port
collisions (Pin 9 and 10), and malfunction of the serial monitor (if TX and RX pins are plugged
in when uploading). Further details are explained in next section.

Autonomous Zamboni Convoy Project

As the perception lead for our capstone project, I’ve been focusing on building the perception
stack on ROS since the beginning of the winter break. Over the break, | got myself familiar with
ROS by taking several online courses, including ROS basics in Python, URDF for Robot
Modeling, TF ROS, ROS Navigation, ROS Perception, OpenCV for ROS, ROS Control, and

ROS Autonomous Vehicles. Some of them are very helpful in that the example packages can be
directly used in our project. Starting from this semester, | worked with Yilin to set up the
environment to simulate the perception stack. After Yilin managed to run a Zamboni vehicle
model in Gazebo, | generated an ArUco board (a board of ArUco markers) with OpenCV, and
used Blender to create a wall with the ArUco board printed on it, which was then inserted inside
Gazebo, right in front of the Zamboni model. In parallel, I also finished the Programming
Familiarization assignment beforehand because Part 3 is about detection of AprilTags, which
would be very helpful to our project since | will implement detection algorithm to estimate the
pose of the leader Zamboni based on the board of ArUco markers behind it.

Challenges

Sensor and Motors Lab

The greatest challenge to me during the completion of this lab must be understanding the
mechanism behind the communication between ROS and Arduino. The package
rosserial_arduino is prone to glitches, such as not being able to generate the header file for my
custom message even though I followed the correct tutorial. There was not too much support
from ROS on this package and hence the tutorials are outdated. Plus, the function definition of
the callback for my subscriber must be located before the initialization of the subscriber, which
took me a lot of time debugging as it was against the coding rules in Arduino. The other major
challenge that’s related to my GUI implementation must be the memory issue with Arduino
UNO. The three lines of code that initialize a NodeHandle, a publisher, and a subscriber, take
70% of the memory on UNO, which directly causes problems such as Arduino not responding
when uploading code, or even the IDE crashing. However, these initializations are necessary for
the GUI and are not possible for any further optimization. As a result, our team had to request an
Arduino MEGA board to avoid such memory problems.

Autonomous Zamboni Convoy Project

Spawning a wall of ArUco markers (described in the previous section) with an appropriate
dimension into Gazebo was the largest challenge regarding my progress on our project so far. |
took advantage of the packages from the ROS courses I’ve learned during the break, which
provides launch scripts that spawn different models into an existing world in Gazebo. However,
the markers on the board were not large enough relative to the size of a Zamboni vehicle.
Therefore, | had to recreate an URDF model that takes in a mesh file of a board of ArUco
markers with the correct dimensions (large enough to be seen by the following Zamboni). In
addition, I was having a difficult time setting up the correct working environment on my Ubuntu.
Because my Ubuntu was Bionic version, I installed Melodic as my ROS distribution but Melodic
only worked with Python 2.7, which caused a lot of environment issues when | tried to install the
correct version of OpenCV for my rospy scripts. | also re-installed Melodic, only to find out that
even my previous packages did not work correctly. After several hours searching solutions to

each error message | encountered, I finally set up the environment prepared to work with the
perception stack for our project.

Teamwork

Sensors and Motors Lab

We divided the work according to the instructions on Canvas, i.e. each person working with one
of the sensor to control a motor and the remaining person working on GUI. Therefore, the four
following members on our team worked on sensors and motors control while | worked on GUI
and integration.

e Nick worked on using the IR sensor to control the DC motor with PID control, including
controlling the motor via either position input or velocity input.

e Rathin worked on using the potentiometer to control the servo motor.

e Jiayi worked on the flex force sensor and the stepper motor.

¢ Yilin worked on the ultrasonic sensor and the stepper motor. He also helped build the
entire circuit that integrated all members’ motors and sensors.

Autonomous Zamboni Convoy Project
In our project, we worked on different topics separately according to the schedule shown in our
CoDRR.
e Nick worked on methods and packages to fuse wheel encoder and IMU data so as to
obtain accurate velocity estimation of the follower.
e Rathin worked on the steering and velocity controller in MATLAB Simulink, specifically
for the Ackermann geometry, as well as the interface between Simulink and ROS.
e Jiayi worked on building the simulation environment for our Zamboni Convoy inside
Gazebo, which includes a synthetic ice rink for the ice hockey game.
e Yilin worked on setting up the URDF for the Zamboni vehicle based on an Ackermann
model, which can be smoothly controlled through keyboard in simulation.

Plans

| would keep on working on the perception stack in ROS. First | shall get the correct pose
estimate from the wall of a board of ArUco markers using the camera on our Zamboni model in
Gazebo. Then | would attach that ArUco board to the rear of another Zamboni and test the pose
estimation algorithm when both the leader and the follower are moving. In parallel, I will work
on the Intel RealSense camera and integrate it into our ROS environment.

Quiz

1. ADXL335 Datasheet

a.

What is the sensor’s range?

+3.6 g (£3g at minimum)
What is the sensor’s dynamic range?

6 g at minimum

What is the purpose of the capacitor CDC on the LHS of the functional block
diagram on p. 1? How does it achieve this?
The capacitor is there to decouple noise from the power supply.
Write an equation for the sensor’s transfer function.

%
Vyue = 0.3 (5) a+ 1.5V

What is the largest expected nonlinearity error in g?
0.3% x 6g = 0.018g
What is the sensor’s bandwidth for the X- and Y-axes?
1600 Hz if there’s no external filter.
How much noise do you expect in the X- and Y-axis sensor signals when your
measurement bandwidth is 25 Hz?

150 X V25 X 1.6 = 948.7 ug
If you didn’t have the datasheet, how would you determine the RMS noise
experimentally?
Assuming no noise from the power supply, we can determine the RMS noise
experimentally by placing the accelerometer on a static surface and recording its
readings over a very long duration. Then we can approximate the RMS noise with

. R 1 . .
the classic equation for a root mean square, /;Zizf where z; is each reading.

2. Signal Conditioning

a.

b.

Filtering
I. 1f amoving average filter uses a large window size, the average value will
not be representative enough for the latest value because of the delay.
if a moving average filter uses a small window size, the information will
be more relevant but in turn will allow noise to be read.
ii. Median filter is computationally expensive since a selection or sorting
algorithm is required to find the median.
Median filter works poorly with continuous noise or multiple outliers if
the window size is not large enough.
Opamps
I. Your uncalibrated sensor has a range of -1.5 to 1.0V
I/, is reference voltage and V; is input voltage.

3. Control
a.

b.

R R
Vout = Vin (1 + _f) - Vref <_f)

R; R;
R\ ViR,
5=1 (1 —f) - =7
" R; R;
R\ ViRy
0= —1.5(1 —f)——
" R; R;

Ry
B LV, = =3V =V,

ii. Your uncalibrated sensor has a range of -2.5 to 2.5V
In this case we can get % = 0 using the same approach as above (no

matter if it’s /] as reference voltage and V, as input voltage or the other
way around). Therefore, it’s not possible to calibrate the sensor.

If you want to control a DC motor to go to a desired position, describe how to
form a digital input for each of the PID terms.

i. Proportional: we can read the positional output from a motor encoder
which is then subtracted from the desired position to get the position error
as the input into the proportional controller.

ii. Integral: we sum the position errors (described above) over each timestep
as the input into the integral controller.

iii. Derivative: we divide the position error obtained as above by the time
difference between every two timesteps to get the speed of change in
position error, which is then fed into the derivative controller.

If the system you want to control is sluggish, which PID term will you use and
why?

I would increase the proportional gain to reduce the rising time so that the system
can be more responsive.

After applying the control in the previous question, if the system still has
significant steady-state error, which PID term will you use and why?

I would use or increase the integral gain, which will record the sum of all the
steady state errors over time so that it can reach the desired position more quickly.
After applying the control in the previous question, if the system still has
overshoot, which PID term will you apply and why?

I would increase the derivative term because it would calculate and predict if the
system will respond too fast to the error so that it can slow down the rate of error
reduction and hence increase damping.

Arduino Program

Note: the definitions of helper functions that are used for sensor interfacing (hence unrelated

to the mechanism of the GUI) are omitted. These can be found in other members’ ILRs.
1 #include <Servo.h>

2 #include <Encoder.h:
3
4 #include <Arduinoc.h:

5 #include <ros.h:

o

#include <sensor_motor_gui/sensors.h:

7 #include <sensor_msgs/JointState.hs

3

g // Declare your pins and variables here
18 #define pi 3.14159265359

11 int guistate = 1;
12 int guiButton;
13 int guiButton_last = @;

14 int guistate _count = -1;
15

16 const int LED_pin = 24;

17

18 //==================== SEM50r5 ==s=========s=======/
19 #define window_size 5

26 const int pui_switch = 53;
21

22 // Potentiometer

23 int pot = A2;

24 int serwvoVal;

25

26 ff IR Sensor

27 const int IR_SENSOR = Al;
28

29 f{ Flex Sensor

38 int flexiForcePin = 48;

31

32 // Ultrasonic Sensor

33 const int TrigPin = 7;

34 const int EchoPin = 13;

35 float distancelm;

36 int duration;

37

38 f{ Button to switch btw ultrasonic or flex to control stepper

39 const int button = 232;

48 int buttonstate;

41 int buttonstate_last = @;

42 int mode_count = -1;

43 int mode=-1;

44 pnsigned long lastDebounceTime = @;

45 unsigned long debounceDelay = 5@;

92

93

94

95

96

o7

93

99
1ae
121
182
183
184
185
186
187
183
189
11a
111
112
113
114
115
116
117
118
119
12@
121
122
123
124
135
126
127
128
125
138
131
132
133
134
135
136
137

int moving_avg wval = @;

f/PID controller variables for position controller

int set_Pos;

long input_Pos;
double kp_p=06.81, ki_p=8.8081, kd_p=5;

int &_pos_sum = @;

int e_pos_last = ©;

S/PID controller variables for speed conmtroller

double input_Speed, set_Speed;
double kp_s=08.35, ki_s=08.8081, kd_s=8.15;

int e_speed_sum = @;

int &_speed_last = @;

S/ DC Motor Helpers

void toggleMotorDirection(int error)

{

if (error > @)

!

H

digitallWrite({Ll, LOW);
digitallirite{L2, HIGH);

else if (error < @)

{

digitallrite(Ll, HIGH);
digitallirite{L2, LOW);

int calcPIDPos(long actual_pos, int des_pos)

{

int e_pos = des_pos - actusl_pos;

int pwm_pulse = @;

toggleMotorDirection{e_pos);
if (abs{e_pos) > 1@)

!

pum_pulse = abs{kp_p¥e_pos + ki_p¥*e_pos_sum + kd_p*(e_pos - e_pos_last));
e _pos_last = e_pos;
€_po0s_Sum += e_pos;
if (pwm_pulse > MAX_PWM_PULSE)
i
pwm_pulse = MAY_PWM_PULSE;
H
else if (pwm_pulse < MIN_PWM_PULSE_PO5)

{

229 moving_avg_arr[k] = moving_avg_arr[k-1];

238 }

231 moving_avg_arr[8] = input;

232 return moving_avg_wval;

233 3

234

235

236 float readIR(){

237 int ir_reading = analogRead{IR_SENSOR);

238 int in = filterInput{ir_reading);

239 float wolt = in * (5.8 7 1823.8);

248 flogt dist = 125.77 * exp(-0.768 * volt);

241 return dist;

242 3

243

244 //======s================ RS s=====================/
245 woid callback{const sensor_msgs::JointState& msg) {

245

247 if {(guistate == @) return;

245

249 5f set_Speed = msg.position[3] *# 255 F 1.57; J//F welocity
258 Jf DC Motor (writing to motor happens in void loop)
251 set_Spesd = msg.position[3];

252 set_Pos = msg.position[2] * 36@ / 3.14; // angle

253

254 J/f buttonState == 1 means controlling motors with GUI
255 £ Servo

256 servo.write(msg.position[@] * 188 / pi);

257

258 !/ Stepper

259 /f Code that drives a stepper, given the radian to set, msg.position[1]
268 int desiredStep = msg.position[l] #* stepsPerRevolution / (2 * pi);
261 stepper{desiredstep);

262

283

264

265 ros: :NodeHandle nh;
266 ros::Subscriber<sensor_msgs::Jointstater sub("joint_states™, callback);
267 sensor_motor_gul::sensors sensors_msg;

268 ros::Publisher pub{"sensors_readings", &sensors_msg);

269

278 [====================== Setup s=============s======/
271 wvodid setup() {

272 Serial.begin({57688);

273

275
278
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
293
299
Jaa
331
332
333
334
335
334
387
383
339
3la
311
312
313
314
315
Eal
317
3138
319

pinMode{LED pin, OUTPUT);

Jf Ultrasonic Sensor
pinMode{TrigPin, OUTPUT);
pinMode{EchoPin, INPUT);

/7 IR
pinMode{IR_SENSOR, INPUT);

£ Servo

servo.attach{servoPin);

/7 Stepper

pinMode({stepperEnable, OUTPUT): // Enable
pinMode{stepperstep,OUTPUT); // Step
pinMode{stepperDir, OUTPUTY; // Dir
digitallWirite{stepperEnable,LOW); // Set Enable
pinMode{button, INPUT);

£ DC Motor

pinMode{ ENCODER_PIN_1, INPUT_PULLUP);
pinMode{ ENCODER_PIM_2, INPUT_PULLUF);
pinMode{Ll, OUTPUT);

pinMode{L2, OUTPUT);

pinMode{ ENABLE_PWM, OUTPUT);
pinMode{dc_BUTTON, INPUT);
digitallirite{dc_BUTTON, HIGH);
old_button = digitalRead(dc_BUTTON);

input_Pos = @;

set_Pos = @;

initMovinghverage();

ffTurn dc motor off
analoghirite (ENABLE_PWM, @);
digitallWrite{ll, LOW);
digitallWrite{L2, LOW);

Sf ROS
nh.initNode();
nh.subscribe{sub);

nh.advertise{pub);

low

328
327
328
329
33e
331
332
333
334
335
338
337
338
339
348
341
342
343
344
345
348
347
348
349
350
351
352
353
354
355
356
357
358
359
360

void loop() {
/7 Potentiometer
float potWalue;

£/ Flex

float force;

f4E IR

float irValue;

/f Ultrasonic

float distancelm;

guiButton = digitalRead{gui_switch);
if ((guiButton == HIGH) &8 (guiButton_last ==
guistate_count ++;

guistate = guiState_count % 2;

f7 debouncing
if (puiButton != guiButton_last){
delay(5a);

guiButton_last = guiButton;

serigl.print{"Button: ");

Serigl.println(mode);

#f Controlling motors using sensors
if (puistate == @) {
Jf Servo Control Part
potValue = analogRead(pot);
servoVal = map(potValue, @, 1823, @, 138);

servo.write{servoval);

LOW)) {

370 ff Stepper Control Part

371 buttonstate = digitalRead(button);

372 if {{buttonState == HIGH) && (buttonState_last == LOW)){
373 mode_count ++;

374 mode = mode_count % 2;

375 S/ mode = mode_count % 4;

376 if (mode ==8){

377 Jf nh.loginfo("Change to Ultrasonic Sensor™);
37g /S Serial.print("ULTRASONIC");

379 1

388 if (mode ==1){

381 Jf nh.loginfo("Change to Flexiforce Sensor");
3| 2 S Serial.print{"FLEX");

383 !

384 sum = @3

385 index = @;

3856 memset({sensorReadings, @, sizeof(sensorReadings));
387

388 flex_sum = @;

389 flex_index = @;

390 memset(flex_senzorReadingsz, @, sizeof(flex_sensorBeadings));
391 T

392

393 /f debouncing

304 if {(buttonState != buttonState_last){

3495 delay(1@);

396 3

397 // update the last state of Button @

3938 button5State_last = buttonState;

399

436 force = Flexiforce();

481 distanceCm = Ultrasonic{);

432

493 if (mode==8){

4a4 S/ distanceCm = Ultrasonic();

435 sensors_msg.ultra = distanceCm;

495 int desiredStep = round(map{distanceCm, @, 188, @, stepsPerRevolution));
487 stepper({desiredstep);

438 £ nh.loginfol"CurrentStep: %f", currentStep);
489 £ nh.loginfol "desiredstep: %f", desiredStep);
418 serial.print{"Ultrasonic: ");

411 Serial.println{distanceCm);

412 3

413 if (mode==1) {

414 S/ force = Flexiforce();

415 ' sensors_msg.flex = force;

Ly int desiredStep = round(map{force, @, 4.4, @, 288));

417 stepper(desiredstep);

418 I nh.loginfol("CurrentStep: %f", currentstep);
419 S nh.loginfo("desiredStep: %f", desiredStep);
428 Serial.print("Flex Force: ");

421 Serial.println{force);

472 ¥

423

424 delay(18};

475

426 ff DC Motor Control Part

427 irValue = readIR();

428 digitalWrite(L1, LOW);

429 digitallirite(L2, HIGH):

430 int output_pwm = map(irValue, 15, &8, MIN_PWM_PULSE_SPEED, MAX_PWM_PULSE};
431 constrain{output_pwm, MIN_PWM_PULSE_SPEED, MAX_PWM_PULSE);
432 analoghirite(ENABLE_PWM, output_pwm);

433 }

434 else {

435 new_button = digitalRead(dc_BUTTON);

4356 if {(new_button != old_button)

437 [

438 if (new_button == HIGH)

439 {

440 stateToggle();

441 T

443 delay(4a};

443 old_button = new_button;

444 }

445

445 if {control_Pos)

447 [

448 long input_Pos = encoder.read();

449 float ocutput_pwm = calcPIDPos(input_Pos, set_Pos);
458 analoghirite(ENABLE_PWM, output_pwm);

451 3

452 else

453 [

454 unsigned long newTime = millis();

455 float timeElapsed = (newTime - oldTime) / 1888.8;
456 long newPosition = encoder.read();

457 float input_Speed = (newPosition - oldPosition) / timeElapsed;
458 input_Speed = input_Speed * &8.8 / 360.89;

459 toggleMotorDirection(set_Speed);

451 int output_pwm = calcPIDSpeed(input_S5Speed, set_Speed, last_output):
462 if {set_Speed == @)

463 {

464 output_pwm = @;

4G5 3

466 gnalogrite{ ENABLE_PWM, output_pwm);
467 last_output = output_pwm;
468 oldPosition = newPosition;
459 0ldTime = newTime;

A70 H

471 }

472

473 /f Publizh message

474 sensors_msg.button = guistate;
475 sensors_msg.flex = force;

476 sensors_msg.ultra = distanceCm;
477 sensors_msg.ir = irValue;

78 sensors_msg.pot = potValue;

479 pub.publish(&sensors_msg);

450

481 nh.spinOnce():

452
Reference

[1] Rosserial Arduino Tutorial, http://wiki.ros.org/rosserial_arduino/Tutorials
[2] Coborg Arduino Project, https://github.com/CoborgCMU/Arduino-project, 2021

http://wiki.ros.org/rosserial_arduino/Tutorials
https://github.com/CoborgCMU/Arduino-project

	Individual Progress
	Sensor and Motors Lab
	GUI
	Integration

	Autonomous Zamboni Convoy Project

	Challenges
	Sensor and Motors Lab
	Autonomous Zamboni Convoy Project

	Teamwork
	Sensors and Motors Lab
	Autonomous Zamboni Convoy Project

	Plans
	Quiz
	Arduino Program
	Reference

