
MRSD Project Course

Team I – AIce

Autonomous Zamboni Convoy

Individual Lab Report 1

Team
Rathin Shah

Nick Carcione

Yilin Cai

Jiayi Qiu

Kelvin Shen

Author
Yilin Cai

Feb 6, 2022

Contents

1 Individual Progress 1
1.1 Sensor & Motor Lab . 1

1.1.1 Sensor . 1
1.1.2 Motor . 1

1.2 Circuit and Code . 2
1.3 MRSD Project . 3

2 Challenges 3
2.1 Sensor & Motor Lab . 3
2.2 MRSD Project . 4

3 Teamwork 5
3.1 Sensor & Motor Lab . 5
3.2 MRSD Project . 6

4 Plans 7

5 Sensor & Motor Control Quiz 7

A Appendix - code 9

1 Individual Progress

1.1 Sensor & Motor Lab

My responsibilities for this sensor and motor lab were to get the ultrasonic sensor input, use
the input to control the stepper motor, develop the average filter and to integrate the electrical
circuit.

1.1.1 Sensor

The ultrasonic sensor I used in this lab is the HC-SR04 ultrasonic distance sensor. This
economical sensor provides 2 cm to 400 cm of non-contact measurement functionality with a
ranging accuracy that can reach up to 3mm.

The twomain pins on the sensor is the Trig (Trigger) and Echo. The Trig pin is used to trigger
the ultrasonic sound pulses. The Echo pin produces a pulse when the reflected signal is received.
The length of the pulse is proportional to the time it took for the transmitted signal to be detected.
The width of the received pulse is then used to calculate the distance to the reflected object. We
can calculate the range through the time interval between sending trigger signal and receiving
echo signal as: uS/58 = centimeters; or: range = high level time ∗ velocity (340m/s)/2.

Since the reading from the ultrasonic sensor is noisy, an averaging filter is develop the filter
the measured distance. The averaging filter stores the most recent five recorded measurements
and returns their average, which helps remove the noise. Here I set a bounding constraint of 0 -
100 cm considering the possible reaching range of the sensor. Any reading outside this range is
bounded to the max or minium value.

1.1.2 Motor

Here, the motor to be controlled by the ultrasonic sensor is the SM-42BYG011-25 stepper
motor. It is a 2 phase stepper motor with a step angle of 1.8 degree, which means in each step
the motor will rotate 1.8 degree. So the steps per revolution is 200. After Arduino receives the
ultrasonic sensor reading, assusimg the motor is not being controlled by GUI, commands are
given to the stepper motor. The distance (0-100cm) measured by ultrasonic sensor is mapped
to the position (0-200 steps) of the stepper motor in one revolution and is saved as desired po-
sition. The motor’s current position is initialized as 0 and keep updated during the control loop.
If the desired position is larger than the current one the stepper motor’s direction position is set
to high, otherwise it is low to make motor rotate reversely. When the stepper motor is moving
from current position to the desired position, a 1000 microseconds delay is set between each
step. Once the desired position is reached, the current position will be updated to it.

The stepper motor is driven by a Pololu DRV8825 motor driver. The DRV8825 is a micro-
stepping driver for controlling bipolar stepper motors which have a built-in translator for easy
operation. Thus, we can control the stepper motor with just 2 pins from our controller. The DIR
pin will control the rotation direction and the STEP pin will control the steps. Before actually
using the stepper motor, I tried to limit the maximum amount of current flowing through the
stepper coils and prevent it from exceeding the motor’s rated current. From the data sheet, the
rated current of the stepper motor is 330 mA under 12 V. Here I followed two methods below
to set the current limit by adjusting the small trimmer potentiometer on the driver.

1

(1) I first put the driver into full-step mode by leaving the three microstep selection pins
disconnected and hold the motor at a fixed position by not clocking the STEP input (setup
as shown in Figure 2). Then I measure the voltage (Vref) on the metal trimmer pot itself
while adjusting it. Adjust the Vref voltage using the formula: Current Limit = V ref ×
2. Since my motor is rated for 330 mA, I adjust the reference voltage to around 0.165V.

Figure 1: Circuit setup for limiting stepper motor current by adjusting voltage.

(2) Similar to previous method, the driver is put into full-step mode and held at a fixed po-
sition. Then the ammeter is placed in series with one of the coils on stepper motor and
measure the actual current flowing. By adjusting the limit potentiometer, the current is
set to reach the rated value. However, in actual attempt the max current value can only
reaches around 280 mA.

Figure 2: Circuit setup for limiting stepper motor current by adjusting current.

1.2 Circuit and Code

The circuit integrating both the ultrasonic sensor and the stepper motor is shown in figure
3. A switch button is also included considering that the motor need also to be controlled by a
force sensor and it needs to be switched between these two. The code for the microcontroller is
attached in Appendix A. It contains the code for reading ultrasonic sensor input and writing the
mapped degree into the motor. Also, the moving average filter code is implemented in the code
as well. The code for controlling stepper motor by Ultrasonic sensor is given in Appendix A.

2

Figure 3: Circuit setup for controlling stepper motor using .

1.3 MRSD Project

Starting from this semester, my responsibility for the Autonomous Zamboni Convoy project
mainly focus on setting up and maintenance of the simulation environment. Specifically, I de-
veloped the URDF file for the Zamboni vehicle, which had an Ackermann steering mechanism.
To better organize the model description, I used XACRO file to build the vehicle model. For
the follower Zamboni, in addition to the vehicle model itself, I added IMU, LiDAR and cam-
era sensor to it using Gazebo plugins. For better visualization, I built a detailed mesh file for
the Zamboni, which was exported from the Solidworks CAD model provided by the sponsor.
However, the CAD model includes very detailed component of the vehicle, thus the mesh file
was extremely complex. I simplified the mesh model in MeshLab and add color to the surface
of the mesh file to make it closer to the actual vehicle appearance. Two Zamboni vehicles were
set up in the ice rink environment.

Moreover, I set up the controller interface in gazebo, including the rear wheel velocity and
front wheel steering angle controller. This controller is actually within the frame of gazebo
sending the controlling command. I realized a keyboard control for both the leader and follower
Zamboni to make them run individually in the simulation environment. I also set the ROS tf
information and visualize the vehicles in RVIZ. I also wrote a odometer based on encoder on
wheels (wheel velocity published by gazebo). Figure 4 show the ROS node map of the current
simulation setup.

2 Challenges

2.1 Sensor & Motor Lab

The major challenge for the sensor and motor lab lies in the current limit setting for the
stepper motor. At first, I tried to set the current limit by only reading the current going from the
DRV8825 drive to the motor according to method (2) in section 1.1.2. However, it took me a lot
of time to find that our multimeter was unable to get the current reading, specifically, we found
it was the fuse who broken.

3

Figure 4: ROS node map for the autonomous Zamboni simulation.

After fixing the multimeter, we measured the current going through the stepper when it was
set to full step mode. We found the default current can only reach around 280 mA and by trying
to adjusting the limit potentiometer, the current won’t exceed 280 mA and won’t reach the rated
value. Since I turned the potentiometer on the driver too much, I believe it somehow got broken
due to the current overload and not drive the motor anymore. After getting a new driver, I found
without any adjustment on current limit, the motor would get very hot after being powered for
a certain time. So I follow the method (1) in section 1.1.2 to set the current limit by measuring
the Vref and then make sure the actual current going through the motor is within the rated range.
Following this step, the motor’s performance returned to normal.

2.2 MRSD Project

The first major challenge I faced for the Autonomous Zamboni Convoy project is building
the URDF file for the Zamboni vehicle. The sponsor provided a very detailed CAD model with
over 1,000 parts describing all the details of a car. However, I combined all the parts into only
five: the four wheels and a car body, and exported them as mesh files. Due to the complexity of
the original mesh file, gazebo will get stuck when loading the vehicle. Thus I try to useMeshLab
to simplify the faces and vectors on of the mesh file, deleting unnecessary detail while keeping
the major outer appearance. Also for better visualisation, I learned to use Blender to change the
scale, center position, and more importantly, the color of each face. It was very time consuming
to preserve the details of appearance while keeping the model as simple as possible. Also in
URDF file, to align the frame of them also requires much time to try and modify to finally make

4

the vehicle looks more realistic.

The second major challenge is about spawning multiple robots in the gazebo simulation.
In our current setup, each follower and leader vehicle should have separate URDF description,
controller and configurations. To distinguish them, I had to set separate namespace within which
the ROS topics for different vehicles can be published or subscribed separately. So it took me
much time to setting up the namespace so that both the tf tree is organized and the configuration
of one vehicle wouldn’t influence another.

3 Teamwork

3.1 Sensor & Motor Lab

Kelvin Shen is in charge of GUI design. His contribution includes:

• Created a ROS publisher and subscriber node in Arduino to send or receive data.
• Created a serial interface between ROS and the Arduino using rosserial.
• Created a URDF for motor that can control the motor outputs through joint_states pub-
lisher in GUI.

• Created a visualization in RVIZ to show the GUI motor control output.
• Created a RQT GUI that contained RVIZ and plots that displayed all the sensor outputs
in real time.

Rathin Shah is in charge of the Potentionmeter sensor and the servo motor. His contribution
includes:

• Wired potentiometer and servo motor to Arduino.
• Mapped potentiometer sensor analog output to servo motor input to control its position.
• Added a button to switch between GUI control and sensor control.
• Helped combine code together and debugged electrical issues.

Nick Carcione is in charge of the IR sensor and the DC motor. His contribution includes:

• Wired Sharp IR Proximity Sensor to Arduino.
• Developed a transfer function that mapped sensor output voltage to measured distance.
• Implemented moving average filter to reduce input noise.
• Wired DC motor and H-bridge to Arduino. Developed PID controls for velocity and
position control of the motor.

• Wrote button debouncing code to switch between position and velocity control.
• Interfaced sensor with DC motor (velocity control)

Yilin Cai is in charge of the Ultrasonic sensor and the stepper motor. His contribution
includes:

• Soldered driver board for stepper motor, wired Ultrasonic sensor and wired the stepper
motor to Arduino.

• Setting current limit for stepper motor by adjusting the driver.
• Developed code for Ultrasonic sensor data reading and stepper motor position control
based on the distance sensed by the sensor.

• Integrated and wired all sensors and motors together.

5

Jiayi Qiu is in charge of the FlexiForce sensor and the stepper motor. Her contribution
includes:

• Wired FlexiForce sensor with Arduino.
• Mapped FlexiForce sensor outputs to stepper motor steps.
• Integrated code for FlexiForce sensor, Ultrasonic sensor and stepper motor.
• Wrote button code with debouncing to switch between these two sensors to control the
stepper motor.

• Wrote a moving average filter to reduce input noise.

3.2 MRSD Project

Kelvin Shen is in charge of perception and recognition. His contribution includes:

• Learned cv_bridge that communicates between ROS camera topic and OpenCV.
• Generated a mesh file of a board of ArUco markers with appropriate size.
• Tested the ArUco wall with Zamboni model inside the Gazebo environment.
• Apply OpenCV libraries of ArUco marker detection to get leader pose.

Rathin Shah is in charge of the controller development. His contribution includes:

• Developed the Pure Pursuit Controller on Simulink for Ackermann Geometry.
• Developed package for fusing IMU + Wheel Odometry for zamboni using ROS.
• Developed the SIMULINK-ROS Interface.

NickCarcione is in charge of theDBWhardware and follower localization. His contribution
includes:

• Researched methods and packages for fusing wheel encoder and IMU data to obtain ac-
curate velocity estimation of follower.

• Looked into DBW conversion hardware
• Identified hardware necessary for conversion of Zamboni to DBW.

Yilin Cai is in charge of the simulation setup. His contribution includes:

• Set up andmaintenance of the simulation environment URDF (XACRO) file development
the Ackermann steering Zamboni with sensor and controller plugins.

• Simplified and colored mesh file for better visualization in URDF.
• Command vehicle motion command with keyboard teleoperation.
• Spawned multi-robot in Gazebo and individually control with keyboard teleoperation.
• Setup tf_tree odometer and frame, and visualized vehicles in Rviz.

Jiayi Qiu is in charge of the simulation environment setup and leader’s estimation. Her
contribution includes:

• Investigated vehicle simulation in Gazebo.
• Helped to simulate the Zamboni.
• Built the ice rink simulation environment.

6

4 Plans

The next step of my MRSD project works will still focus on the simulation part. First, I
will work on the camera and LiDAR data visualization in Rviz. In addition, I will continue
refinement of simulation details, like physical parameter in URDF file and gazebo controller
plugins. I will also modify the mesh file to equip the leader Zamboni with a ArTag figure at
the back of it, which will create the interface for detection. Moreover, I will clarify the frame
definition, including map and odometer frame, which will enable the localization.

5 Sensor & Motor Control Quiz

ADXL335 accelerometer

• The range is ±3 g (minimum), ±3.6 g (typical).

• The dynamic range is 6g (minimum), 7.2g (typical).

• The purpose of the capacitor is to reduce the input voltage noise and maintain the voltage
at 3V. It can filter out high-frequency noises from the power source. The capacitor will
perform the role as a battery and discharge the circuit when the voltage drops below 3V.
I then gets charged when the voltage increases to make the voltage stable.

• Vout = 1.5V + 0.3V
g

× a where a is the acceleration with unit in gs.

• 0.3%× 7.2g = 0.0216g

• Bandwidths is from 0.5 Hz to 1600 Hz for the X and Y axes.

• RMS = Noise Density×
√
BW × 1.6 = 150 µg√

Hz
×
√
25Hz × 1.6 = 948.68µg

• We can fist palce the accelerometer on the static surface and measure the output voltage
over a long time duration. Then, calculating the root mean square for the reading will help
determine the noise.

Signal conditioning
Filtering

• First, if the moving average filter has a large window size, the output could have a signifi-
cant lag. Second, amoving average filter cannot effectively filter the individual occasional
errors (like a occasional huge number).

• First, the median filter is computationally expensive. Second, sustained increases or de-
creases in the signal will delay the response.

Opamps

• Your uncalibrated sensor has a range of -1.5 to 1.0V

– V2 is the input voltage and V1 is the reference voltage.

7

–
Vout = (V2 − V1

Rf

Ri

) + V)2

0 = −1.5× (1 +
Rf

Ri

)− Vref
Rf

Ri

5 = 1× (1 +
Rf

Ri

)− Vref
Rf

Ri

Rf

Ri

= 1, Vref = −3V

• Your uncalibrated sensor has a range of -2.5 to 2.5V

– It is impossible to find a solution.
– If V1 is the input voltage and V2 is the reference voltage.

0 = 2.5× (1 +
Rf

Ri

)− Vref
Rf

Ri

5 = 2.5× (1 +
Rf

Ri

)− Vref
Rf

Ri

However, there is no solution for this situation.
If V2 is the input voltage and V1 is the reference voltage.

0 = −2.5× (1 +
Rf

Ri

)− Vref
Rf

Ri

5 = 2.5× (1 +
Rf

Ri

)− Vref
Rf

Ri

Rf

Ri

= 0

However, this situation is impossible to calibrate.

Control

• Form a digital input for each of the PID

– The P term is the difference between the desired position and the current position.
– The I term can be calculated by keeping a running sum of the P terms at each time
step.

– The D term is adding current position error with the previous position error, then
divided by the timestep.

• If the system is sluggish, I would want turn up the P terms. They should reduce rise time
and make the system react faster.

• If the system then has steady-state error, I will turn up the I term because it compensate
for the accumulated errors.

• If the system then has overshoot, the D term should be increased to reduces overshoot.

8

A Appendix - code

#define window_size 5

// Ultrasonic Sensor variables
const int TrigPin = 7;
const int EchoPin = 13;
float distanceCm;
int duration;

// Stepper Motor variables
const int stepperEnable = 6;
const int stepperStep = 5;
const int stepperDir = 4;
const int stepsPerRevolution =200;
int currentStep;

// Filter function
int sensorReadings[window_size];
int sum = 0;
int index = 0;
int RunningAverage_filter(int reading){

sum -= sensorReadings[index];
sensorReadings[index] = reading;
sum += sensorReadings[index];
index = (index+1) % window_size;
return sum/window_size;

}

// Ultrasonic Sensor function
float Ultrasonic(){

digitalWrite(TrigPin , LOW);
delayMicroseconds(2);
digitalWrite(TrigPin , HIGH);
delayMicroseconds(10);
digitalWrite(TrigPin , LOW);

duration = pulseIn(EchoPin , HIGH);
int filtered_duration = RunningAverage_filter(duration);
distanceCm = filtered_duration / 58.0;
distanceCm = (int(distanceCm * 100.0)) / 100.0;

if(distanceCm > 100.0){//bounds check
distanceCm = 100.0;

}
if(distanceCm < 0){

distanceCm = 0;
}

9

Serial.print("Distance:");
Serial.print(distanceCm);
Serial.print("cm");
Serial.println();
delay(10);
return distanceCm;

}

// Stepper Motor function
void stepper(int desiredStep){

if(desiredStep > currentStep) digitalWrite(stepperDir ,HIGH);
else digitalWrite(stepperDir ,LOW);

for(int x = 0; x < abs(desiredStep -currentStep); x++){
digitalWrite(stepperStep , HIGH);
delayMicroseconds(1000);
digitalWrite(stepperStep , LOW);
delayMicroseconds(1000);
}
currentStep = desiredStep;

//return;
}

void setup(){
Serial.begin(9600);
pinMode(TrigPin , OUTPUT);
pinMode(EchoPin , INPUT);

pinMode(stepperEnable ,OUTPUT); // Enable
pinMode(stepperStep ,OUTPUT); // Step
pinMode(stepperDir ,OUTPUT); // Dir
digitalWrite(stepperEnable ,LOW); // Set Enable low

}

void loop(){

// Ultrasonic Sensor
float distanceCm = Ultrasonic();
int desiredStep = round(map(distanceCm , 0, 100, 0,

stepsPerRevolution));
stepper(desiredStep);
Serial.print("CurrentStep:");
Serial.println(currentStep);
Serial.print("desiredStep:");
Serial.println(desiredStep);
delay(100);

}

10

	Individual Progress
	Sensor & Motor Lab
	Sensor
	Motor

	Circuit and Code
	MRSD Project

	Challenges
	Sensor & Motor Lab
	MRSD Project

	Teamwork
	Sensor & Motor Lab
	MRSD Project

	Plans
	Sensor & Motor Control Quiz
	Appendix - code

